[1] Yang X M, Yang X Y, Zheng Y F, et al. A rare earth element-rich carbonatite dyke at Bayan Obo, Inner Mongolia, North China[J]. Mineralogy and Petrology,2003, 78:93-110.[2] Eggler D H. Does CO2 cause partial melting in the low-velocity layer of the mantle?[J] Geology, 1976a,4:69-72.[3] Eggler D H. Does CO2 cause partial melting in the low-velocity layer of the mantle? Comment and reply-reply[J]. Geology, 1976b,4:787-789.[4] Presnall C, Gudfinnsson G H. Carbonate-rich melts in the oceanic low-velocity zone and deep mantle[J]. Special Papers-Geological Society of America, 2005,388:207.[5] Wyllie P J, Huang W L. Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications[J]. Contrib Mineral Petrol, 1976,54:79-107.[6] Dasgupta R, Mallik A, Tsuno K, et al. Carbon-dioxide-rich silicate melt in the Earth's upper mantle[J]. Nature, 2013,493:211-215.[7] Gaillard F, Malki M, Iacono-Marziano G, et al. Carbonatite melts and electrical conductivity in the asthenosphere[J]. Science, 2008,322:1 363-1 365.[8] Litvin Y, Spivak A, Solopova N, et al. On origin of lower-mantle diamonds and their primary inclusions [J]. Physics of the Earth and Planetary Interiors, 2014,228:176-185[9] Pal'Yanov Y N, Sokol A G, Borzdov Y M, et al. Diamond formation through carbonate-silicate interaction [J]. American Mineralogist,2002, 87:1 009-1 013.[10] Spivak A, Dubrovinsky L, Litvin Y A. Origin of ultra-deep diamonds: chemical interaction of ca-carbonate and the earth's lower mantle minerals[J]. EGU General Assembly Conference Abstracts, 2012, 531.[11] Spivak A, Litvin Y A, Ovsyannikov S, et al. Stability and breakdown of Ca13CO3 melt associated with formation of 13C-diamond in static high pressure experiments up to 43 GPa and 3900 K[J]. Journal of Solid State Chemistry, 2012,191:102-106.[12] Rohrbach A, Schmidt M W. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling[J]. Nature, 2011,472:209-212.[13] Brenker F E, Vollmer C, Vincze L, et al. Carbonates from the lower part of transition zone or even the lower mantle[J]. Earth and Planetary Science Letters, 2007,260:1-9.[14] Kaminsky F. Mineralogy of the lower mantle: a review of 'super-deep' mineral inclusions in diamond[J]. Earth-Science Reviews, 2012,110:127-147.[15] Kaminsky F, Wirth R, Matsyuk S, et al. Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas[J]. Mineral Mag-azine, 2009,73:797-816.[16] Kaminsky F V, Wirth R, Schreiber A. Carbonatitic inclusions in deep Mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association[J]. The Canadian Mineralogist, 2013,51:669-688.[17] Pal'Yanov N, Sokol A, Borzdov M, et al. Fluid-bearing alkaline carbonate melts as the medium for the formation of diamondsin the Earth's mantle: an experimental study[J]. Lithos, 2002b,60: 145-159.[18] Dobson D P, Jones A P, Rabe R, et al. In-situ measurement of viscosity and density of carbonate melts at high pressure[J]. Earth and Planetary Science Letters, 1996,143:207-215.[19] Liu Q, Lange R A. New density measurements on carbonate liquids and the partial molar volume of the CaCO3 component[J]. Contrib Mineral Petrol, 2003,146:370-381.[20] Spedding P, Mills R. Trace-ion diffusion in molten alkali-carbonates [J]. Journal of the Electrochemical Society, 1965,112: 594-599.[21] Spedding P, Mills R. Tracer diffusion measurements in mixtures of molten alkali carbonates[J]. Journal of The Electrochemical Society, 1966,113:599-603.[22] Wolff J. Physical properties of carbonatite magmas inferred from molten salt data, and application to extraction patterns from carbonatite-silicate magma chambers[J]. Geological Magazine, 1994,131:145-153.[23] Genge M J, Price G D, Jones A P. Molecular dynamics simulations of CaCO3 melts to mantle pressures and temperatures: implications for carbonatite magmas[J]. Earth and Planetary Science Letters, 1995,131:225-238.[24] Costa M F. Molecular dynamics of molten Li2CO3-K2CO3[J]. Journal of Molecular Liquids, 2008,138: 61-68.[25] Koishi T, Kawase S, Tamaki S, et al. Computer simulation of molten Li2CO3-K2CO3 mixtures[J]. Journal of the Physical Society of Japan, 2000,69:3291-3296.[26] Brooker R, Hamilton D. Three-liquid immiscibility and the origin of carbonatites[J]. Nature, 1990, 346:459-462.[27] Bailey D. Carbonate magmas[J]. Journal of the Geological Society, 1993,150:637-651.[28] Viladkar S. Evolution of calcio-carbo-natite magma: evidence from the sövite and alvikite association in the amba dongar complex, India [M]. Geochemistry-Earth's System Processes, 2012, 20:485-501.[29] Kogarko L, Henderson C, Pacheco H. Primary Ca-rich carbonatite magma and carbonate-silicate-sulphide liquid immiscibility in the upper mantle[J]. Contrib Mineral Petrol, 1995, 121:267-274.[30] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6: 15-50.[31] Zhang Z G, Stixrude L, Brodholt J. Elastic properties of MgSiO3-perov-skite under lower mantle conditions and the composition of the deep Earth[J]. Earth and Planetary Science Letters,2013, 379: 1-12.[32] Zhang Z G, Liu Z R, High pressure equation of state for molten CaCO3 from first principles simulations[J]. Chinese Journal of Geochemistry, 2014, Accepted.[33] Bobrovsky S V, Gogolev V M, Zamysh-lyacv B V, et al. The study of thermal decomposition influence on the spallation velocity for strong shock waves in solids[J]. Problemy Razrabotki Poleznykh Iskopaemyh, 1976, 3:49-57 (in Russian, see English translation in Soviet Mining Science).[34] Martinez I, Deutsch A, Schrer U, et al. Shock recovery experiments on dolomite and thermodynamical calculations of impact induced decarbonation[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 1995,100:15 465-15 476.[35] Ono S, Kikegawa T, Ohishi Y, et al. Post-aragonite phase transformation in CaCO3 at 40 GPa[J]. American Mineralogist,2005,90: 667-671.[36] Kerley I. Equations of state for calcite minerals. I. theoretical model for dry calcium carbonate[J]. International Journal of High Pressure Research, 1989, 2: 29-47.[37] Irving A, Wyllie P. Melting relationsh-ips in CaO-CO2 and MgO-CO2 to 36 kilobars with comments on CO2 in the mantle[J]. Earth and Planetary Science Letters, 1973,20:220-225.[38] Dziewonski A M, Anderson D L. Preliminary reference Earth model[J]. Physics of the Earth and Planetary interiors, 1981, 25:297-356.[39] Suzuki A, Ohtani E, Kato T. Density and thermal expansion of a peridotite melt at high pressure[J]. Physics of the earth and planetary interiors, 1998,107:53-61.[40] Suzuki A, Ohtani E, Funakoshi K, et al. Viscosity of albite melt at high pressure and high temperature[J]. Physics and Chemistry of Minerals, 2002, 29:159-165.[41] Kushiro I. Viscosity and structural changes of albite (NaAlS3O8) melt at high pressures[J]. Earth and Planetary Science Letters, 1978,41: 87-90.[42] Seifert R, Malfait W J, Lerch P, et al. Partial molar volume and compressibility of dissolved CO2 in glasses with magmatic compositions [J]. Chemical Geology,2013, 358: 119-130.[43] Cooper A, Gittins J, Tuttle O. The system Na2CO3-K2CO3-CaCO3 at 1 kilobar and its significance in carbonaatite petrogenesis[J]. American Journal of Science, 1975,275:534-560.[44] Ghosh S, Ohtani E, Litasov K, et al. Stability of carbonated magmas at the base of the Earth's upper mantle[J]. Geophysical Research Letters, 2007,34(22)L22312:1-5.[45] Arima M, Kozai Y, Akaishi M. Diamond nucleation and growth by reduction of carbonate melts under high-pressure and high-temperature conditions[J]. Geology, 2002, 30:691-694.[46] Anderson O. The Earth's core and the phase diagram of iron[J]. Philosophical transactions of the royal society of London. Series A, Mathematical and Physical Sciences,1982,306:21-35.[47] Shcheka S S, Wiedenbeck M, Frost D J, et al. Carbon solubility in mantle minerals[J]. Earth and Planetary Science Letters, 2006, 245:730-742.[48] Martinez I, Zhang J Z, Reeder R J. In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature: evidence for dolomite breakdown to aragonite and magnesite [J]. American Mineralogist, 1996, 81: 611-624.[49] Liu Q, Tenner T J, Lange R A. Do carbonate liquids become denser than silicate liquids at pressure? Constraints from the fusion curve of K2CO3 to 3.2 GPa[J]. Contrib Mineral Petrol, 2007, 153:55-66.[50] Guo X. Density and compressibility of FeO-bearing silicate melt: relevance to magma behavior in the earth . University of Michigan, 2013.[51] Stixrude L, Karki B. Structure and freezing of MgSiO3 liquid in Earth's lower mantle[J]. Science, 2005,310: 297-299.[52] Seifert R. Compressibility of volatile-bearing magmatic liquids[D]. ETH Zurich, 2013. |