[1] Yu Z F, Li J W, Liu K. Radar emitter recognition based on PSO-BP network[J]. AASRI Procedia, 2012(1):213-219.[2] Ismail A, Jeng D S, Zhang L L. An optimised product-unit neural network with a novel PSO-BP hybrid training algorithm: applications to load-deformation analysis of axially loaded piles[J]. Engineering Applications of Artificial Intelligence, 2013, 26(10): 2 305-2 314.[3] 王亮, 张宏伟, 岳琳, 等. PSO-BP 模型在城市用水量短期预测中的应用[J]. 系统工程理论与实践, 2007, 27(9): 165-170.[4] Liu K, Guo W Y, Shen X L, et al. Research on the forecast model of electricity power industry loan based on GA-BP neural network[J]. Energy Procedia, 2012, 14: 1 918-1 924.[5] 王德明, 王莉, 张广明. 基于遗传 BP 神经网络的短期风速预测模型[J]. 浙江大学学报: 工学版, 2012, 46(5): 837-841.[6] Huang J, Luo H, Wang H, et al. Prediction of time sequence based on GA-BP neural net[J]. Journal of University of Electronic Science and Technology of China, 2009, 5:29.[7] Liu Y P, Wu M G, Qian J X. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network[J]. Thermochimica acta, 2007, 454(1): 64-68.[8] Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ: IEEE Press, 1995(4): 1 942-1 948.[9] 曾建潮, 介婧, 崔志华. 微粒群算法[M]. 北京: 科学出版社, 2004: 1-23, 116-139.[10] Sun J, Feng B, Xu W. Particle swarm optimization with particles having quantum behavior[C]//Congress on Evolutionary Computation. 2004, 325-331.[11] Clerc M,Kennedy J. The partiele swarm: explosion,stability and convergence in a muli-dimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6: 58-73.[12] Sun J. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level[C]//IEEE International Conference on Systems, Man and Cybernetics, 2005: 3 049-3 054.[13] 喻胜华, 邓娟.基于主成分分析和贝叶斯正则化BP神经网络的GDP预测[J].湖南大学学报:社科版,2011, 25(6): 42-45.[14] 向平, 张蒙, 张智, 等. 基于BP神经网络的城市时用水量分时段预测模型[J]. 中南大学学报:自然科学版, 2012,43(8): 3 320-3 324.[15] Majhi R, Panda G, Sahoo G. Efficient prediction of exchange rates with low complexity artificial neural network models[J]. Expert System with Applications, 2009,36: 181-189.[16] 王鹏, 刘渊.基于改进的QPSQ训练BP网络的网络流量预测[J].计算机应用研究, 2009, 26(1): 299-301.[17] Baffigi A, Golinelli R, Parigi G. Bridge models to forecast the euro area GDP[J]. International Journal of Forecasting, 2004, 20: 447-460.[18] Zukime M, Junoh H M, Universiti K, et al. Predicting GDP growth in Malaysia using knowledge-based economy indicators: a comparison between neural network and econometric approaches[J]. Sunway College Journal, 2004(1):39-50.[19] 熊志斌.基于ARIMA与神经网络集成的GDP时间序列预测研究[J].数理统计与管理,2011, 30(2): 306-314.[20] 桂文林, 韩兆洲.基于状态空间模型的中国季度GDP季节调整(1996—2009年)[J].数量经济技术经济研究, 2011(7): 77-89.[21] 何新易.基于时间序列模型的中国GDP增长预测分析[J].财经理论与实践,2012, 33(4): 96-99. |