[1] Klayman D L. Qinghaosu (artemisinin): an antimalarial drug from China [J]. Science, 1985, 228(4703): 1 049-1 055. [2] Mutabingwa T K. Artemisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy [J]. Acta Tropica, 2005, 95(3): 305-315. [3] Bouwmeester H J, Wallaart T E, Janssen M H, et al. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis [J]. Phytochemistry, 1999, 52(5): 843-854. [4] Teoh K H, Polichuk D R, Reed D W, et al. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin [J]. FEBS Letters, 2006, 580(5): 1 411-1 416. [5] Zhang Y, Teoh K H, Reed D W, et al. The molecular cloning of artemisinic aldehydeΔ11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua L. [J]. Journal of Biological Chemistry, 2008, 283(31): 21 501-21 508. [6] Duke M V, Paul R N, Elsohly H N, et al. Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. [J]. International Journal of Plant Sciences, 1994, 155(3): 365-372. [7] Ferreira J F, Simon J E, Janick J. Relationship of artemisinin content of tissue-cultured, greenhouse-grown, and field-grown plants of Artemisia annua L. [J]. Planta Medica, 1995, 61(4): 351-355. [8] Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496(7446): 528-532. [9] Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast [J]. Nature, 2006, 440(7086): 940-943. [10] Zhang L, Jing F, Li F, et al. Development of transgenic Artemisia annua L (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing [J]. Biotechnology and Applied Biochemistry, 2009, 52(3): 199-207. [11] Alam P, Abdin M Z. Overexpression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content [J]. Plant Cell Reports, 2011, 30(10): 1 919-1 928. [12] Zhang Y S, Ye H C, Liu B Y, et al. Exogenous GA3 and flowering induce the conversion of artemisinic acid to artemisinin in Artemisia annua plants [J]. Russian Journal of Plant Physiology, 2005, 52(1): 58-62. [13] Kapoor R, Chaudhary V, Bhatnagar A K. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L.[J]. Mycorrhiza, 2007, 17(7): 581-587. [14] Wang H H, Ma C F, Li Z Q, et al. Effects of exogenous methyl jasmonate on artemisinin biosynthesis and secondary metabolites in Artemisia annua L.[J]. Industrial Crops and Products, 2010, 31(2): 214-218. [15] Pu G B, Ma D M, Chen J L, et al. Salicylic acid activates artemisinin biosynthesis in Artemisia annua L.[J]. Plant Cell Reports, 2009, 28(7): 1 127-1 135. [16] Liu D H, Zhang L D, Li C X, et al. Effect of wounding on gene expression involved in artemisinin biosynthesis and artemisinin production in Artemisia annua L.[J]. Russian Journal of Plant Physiology, 2010, 57(6): 882-886. [17] Jing F Y, Zhang L, Li M Y, et al. Abscisic acid (ABA) treatment increases artemisinin content in Artemisia annua L. by enhancing the expression of genes in artemisinin biosynthetic pathway [J]. Biologia, 2009, 64(2): 319-323. [18] Lei C Y, Ma D M, Pu G B, et al. Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua L. [J]. Industrial Crops and Products, 2011, 33(1): 176-182. [19] Clouse S D. Molecular genetic studies confirm the role of brassinosteroids in plant growth and development [J]. Plant Journal, 1996, 10(1): 1-8. [20] Li J, Chory J. Brassinosteroid actions in plants [J]. Journal of Experimental Botany, 1999, 50(332): 275-282. [21] Feldmann K A, Marks M D, Christianson M L, et al. A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis [J]. Science, 1989, 243(4896): 1 351-1 354. [22] Chory J, Nagpal P, Peto C A. Phenotypic and genetic-analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis [J]. Plant Cell, 1991, 3(5): 445-459. [23] Mangelsdorf D J, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade [J]. Cell, 1995, 83(6): 835-839. [24] Friedrichsen D M, Joazeiro C A, Li J, et al. Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase [J]. Plant Physiology, 2000, 123(4): 1 247-1 256. [25] Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction [J]. Cell, 1997, 90(5): 929-938. [26] Wang Z Y, Nakano T, Gendron J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroids biosynthesis [J]. Developmental Cell, 2002, 2(4): 505-513. [27] Yin Y, Wang Z Y, Mora-Garcia S, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation [J]. Cell, 2002, 109(2): 181-191. [28] He J X, Gendron J M, Sun Y, et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses [J]. Science, 2005, 307(5715): 1 634-1 638. [29] Yin Y, Vafeados D, Tao Y, et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis [J]. Cell, 2005, 120(2): 249-259. [30] Sun Y, Fan X Y, Cao D M, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis [J]. Developmental Cell, 2010, 19(5): 765-777. [31] Yu X, Li L, Zola J, et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BES1 target genes in Arabidopsis thaliana [J]. Plant Journal, 2011, 65(4): 634-646. [32] Yin Y H, Vafeados D, Tao Y, et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis [J]. Cell, 2005, 120(2): 249-259. [33] Zhao S S, Zeng M Y. Application of precolumn reaction to high-performance liquid chromatography of qinghaosu in animal plasma [J]. Analytical Chemistry, 1986, 58(2): 289-292. [34] Ma D M, Pu G B, Lei C Y, et al. Isolation and characterization of AaWRKY1, an Artemisia annua L. transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis [J]. Plant Cell Physiology, 2009, 50(12): 2 146-2 161. |