[1] Shiri D, Kong Y, Buin A, et al. Strain induced change of bandgap and effective mass in silicon nanowires[J]. Applied Physics Letters, 2008, 93(7):073114.
[2] Li X, Maute K, Dunn M L, et al. Strain effects on the thermal conductivity of nanostructures[J]. Physical Review B, 2010, 81(24):245318.
[3] Chu M, Sun Y, Aghoram U, et al. Strain:a solution for higher carrier mobility in nanoscale MOSFETs[J]. Annual Review of Materials Research, 2009, 39:203-229.
[4] Zhao L D, Lo S H, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496):373-377.
[5] Zhao L D, Tan G, Hao S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe[J]. Science, 2016, 351(6269):141-144.
[6] Liu S, Guo X, Li M, et al. Solution-phase synthesis and characterization of single-crystalline SnSe nanowires[J]. Angewandte Chemie International Edition, 2011, 50(50):12050-12053.
[7] Lopez S, Ortiz A. Spray pyrolysis deposition of SnxSy thin films[J]. Semiconductor Science Technology, 1994, 9(11):2130-2133.
[8] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3):510-519.
[9] Sinsermsuksakul P, Sun L, Lee S W, et al. Overcoming efficiency limitations of SnS-Based solar cells[J]. Advanced Energy Materials, 2014, 4(15):1400496.
[10] Reddya K T R, Reddya N K, Milesb R W. Photovoltaic properties of SnS based solar cells[J]. Solar Energy Materials and Solar Cells, 2006, 90(18):3041-3046.
[11] Baumgardner W J, Choi J J, Lim Y F, et al. SnSe nanocrystals:synthesis, structure, optical properties, and surface chemistry[J]. Journal of the American Chemical Society, 2010, 132(28):9519-9521.
[12] Li L, Chen Z, Hu Y, et al. Single-layer single-crystalline SnSe nanosheets[J]. Journal of the American Chemical Society, 2013, 135(4):1213-1216.
[13] Elkorashy A M. Photoconductivity in tin sulphide single crystals[J]. Physica B:Condensed Matter, 1991, 168(4):257-267.
[14] Calixto-Rodriguez M, Martinez H, Sanchez-Juarez A, et al. Structural, optical,and electrical properties of tin sulfide thin films grown by spray pyrolysis[J]. Thin Solid Films, 2009, 517(7):2497-2499.
[15] Leach M, Reddy K T R, Reddy M V, et al. Tin sulphide thin films synthesised using a two step process[J]. Energy Procedia, 2012, 15:371-378.
[16] Kutorasinski K, Wiendlocha B, Kaprzyk S, et al. Electronic structure and thermoelectric properties of n-and p-type SnSe from first-principles calculations[J]. Physical Review B, 2015, 91(20):205201.
[17] Vidal J, Lany S, d'Avezac M, et al. Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS[J]. Applied Physics Letters, 2012, 100(3):032104.
[18] Kresse G, Furthmuler J. Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169.
[19] Lejaeghere K, Bihlmayer G, Bjokman T, et al. Reproducibility in density functional theory calculations of solids[J]. Science, 2016, 351(6280):1415.
[20] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865.
[21] Blochl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24):17953.
[22] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3):1758-1775.
[23] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188-5192.
[24] Klimes J, Bowler D R, Michaelides A. Chemical accuracy for the van der Waals density functional[J]. Journal of Physics:Condensed Matter, 2010, 22(2):022201.
[25] Klimes J, Bowler D R, Michaelides A. Van der Waals density functionals applied to solids[J]. Physical Review B, 2011, 83(19):195131.
[26] Becke A D, Johnson E R. A simple effective potential for exchange[J]. Journal of Chemical Physics, 2006, 124(22):221101.
[27] Togo A, Tanaka I. First principles phonon calculations in materials science[J]. Scripta Materialia, 2015, 108:1-5.
[28] Brown A, Rundqvist S. Refinement of the crystal structure of black phosphorus[J]. Acta Crystallographica, 1965, 19(4):684-685.
[29] Qiao J, Kong X, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communication, 2014, 5:4475.
[30] Wiedemeier H, Schnering H G. Refinement of the structures of GeS, GeSe, SnS and SnSe[J]. Zeitschrift fur Kristallographie, 1978, 148(3):295-303.
[31] Choi J B, Lakes R S. Design of a fastener based on negative Poisson ratio foam[J]. Cell Polymers, 1991, 10(3):205-212.
[32] Sun Y, Pugno N. Hierarchical fibers with a negative Poisson's ratio for tougher composites[J]. Materials, 2013, 6(2):699-712.
[33] Park Y J, Kim J K, The effect of negative Poisson's ratio polyurethane scaffolds for articular cartilage tissue engineering applications[J]. Advances in Materials Science and Engineering, 2013, 2013:853289.
[34] Liu Q. Literature review:materials with negative Poisson's ratios and potential applications to aerospace and defense[J]. Defense Science and Technology Organization, 2006, 1:1102356.
[35] Jiang J W, Park H S. Negative Poisson ratio in single-layer black phosphorus[J]. Nature Communication, 2014, 5:4727.
[36] Qin G, Yan Q B, Qin Z, et al. Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance[J]. Scientific Reports, 2014, 4:6946.
[37] 吴琼, 刘俊, 董前民, 等. 硫化锡电子结构和光学性质的量子尺寸效应[J]. 物理学报, 2014, 63(6):067101.
[38] Feng J, Qian X, Huang C W, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel[J]. Nature Photonics, 2012, 6(12):866-872.
[39] Yang Y, Guo W, Zhang Y, et al. Piezotronic effect on the output voltage of P3HT/ZnO micro/nanowire heterojunction solar cells[J]. Nano Letters, 2011, 11(11):4812-4817. |