[1] Kataoka H, Tomiyama A, Hosokawa S, et al. Two-phase swirling flow in a gas-liquid separator[J]. Journal of Power and Energy Systems, 2008, 2(4):1120-1131.
[2] Kataoka H, Shinkai Y, Hosokawa S, et al. Swirling annular flow in a steam separator[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(3):1-7.
[3] Kataoka H, Shinkai Y, Tomiyama A. Pressure drop in two-phase swirling flow in a steam separator[J]. Journal of Power and Energy Systems, 2009, 3(2):382-392.
[4] Kataoka H, Shinkai Y, Tomiyama A. Effects of swirler shape on two-phase swirling flow in a steam separator[J]. Journal of Power and Energy Systems, 2009, 3(2):347-355.
[5] Fryer P J, Whalley P B. The effect of swirl on the liquid distribution in annular two-phase flow[J]. International Journal of Multiphase Flow, 1982, 8(3):285-289.
[6] Bas H, Ozceyhan V. Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall[J]. Experimental Thermal and Fluid Science, 2012, 41(3):51-58.
[7] Chang L M, Wang L B, Song K W, et al. Numerical study of the relationship between heat transfer enhancement and absolute vorticity flux along main flow direction in a channel formed by a flat tube bank fin with vortex generators[J]. International Journal of Heat and Mass Transfer, 2009, 52(7):1794-1801.
[8] Song K W, Wang Y, Zhang Q, et al. Numerical study of the fin efficiency and a modified fin efficiency formula for flat tube bank fin heat exchanger[J]. International Journal of Heat and Mass Transfer, 2011, 54(11):2661-2672.
[9] Li J, Wang S F, Chen J F, et al. Numerical study on a slit fin-and-tube heat exchanger with longitudinal vortex generators[J]. International Journal of Heat and Mass Transfer, 2011, 54(9):1743-1751.
[10] Molina R, Wang S, Gomez L E, et al. Wet gas separation in gas-liquid cylindrical cyclone separator[J]. Journal of Energy Resources Technology, 2008, 130(4):130-134.
[11] Hewitt G F, Hall-Taylor N. Annular two-phase flow[M]. Oxford:Pergamon, 1970:110-117.
[12] Miesen R, Beijnon G, Duijvestijn P E M, et al. Interfacial waves in core-annular flow[J]. Journal of Fluid Mechanics, 1992, 238(5):97-117.
[13] Liu L, Bai B F. Interfacial stability in vertical swirling annular two-phase Flow[C]//NURETH-16, Chicago, IL UAS, Aug 29-Sep 6, 2015.
[14] Matas J P, Hong M, Cartellier A. Stability of a swirled liquid film entrained by a fast gas stream[J]. Physics of Fluids, 2014, 26(4):042108.
[15] Jeon J, Hong M, Han Y M, et al. Experimental study on spray characteristics of gas-centered swirl coaxial injectors[J]. Journal of Fluids Engineering, 2011, 133(12):121303.
[16] Im J H, Cho S, Yoon Y, et al. Comparative study of spray characteristics of gas-centered and liquid-centered swirl coaxial injectors[J]. Journal of Propulsion and Power, 2010, 26(6):1196-1204.
[17] Barnea D, Taitel Y. Kelvin-Helmholtz stability criteria for stratified flow:viscous versus non-viscous (inviscid) approaches[J]. International Journal of Multiphase Flow, 1993, 19(93):639-649.
[18] Ishii M, Hibiki T. Thermo-fluid dynamics of two-phase flow[M]. Springer Berlin, 2011:48-52.
[19] Rosenthal D K. The shape and stability of a bubble at the axis of a rotating liquid[J]. Journal of Fluid Mechanics, 1962, 12(03):358-366.
[20] Hocking L M. The stability of a rigidly rotating column of liquid[J]. Mathematika, 1960, 7(01):1-9.
[21] Pedley T J. The stability of rotating flows with a cylindrical free surface[J]. Journal of Fluid Mechanics, 1967, 30(1):127-147. |