[1] 李天斌, 陈子全, 陈国庆,等. 不同含水率作用下砂岩的能量机制研究[J]. 岩土力学, 2015(s2):229-236.
[2] Lockington D, Parlange J Y, Dux P. Sorptivity and the estimation of water penetration into unsaturated concrete[J]. Materials & Structures, 1999, 32(5):342-347.
[3] Leventis A, Verganelakis D A, Halse M R, et al. Capillary imbibition and pore characterisation in cement pastes[J]. Transport in Porous Media, 2000, 39(2):143-157.
[4] Dehghanpour H, Lan Q, Saeed Y, et al. Spontaneous imbibition of brine and oil in gas shales:effect of water adsorption and resulting microfractures[J]. Energy & Fuels, 2013, 27(6):3039-3049.
[5] Engelder T, Cathles L M, Bryndzia L T. The fate of residual treatment water in gas shale[J]. Journal of Unconventional Oil & Gas Resources, 2014, 7:33-48.
[6] 蔡建超, 郁伯铭. 多孔介质自发渗吸研究进展[J]. 力学进展, 2012, 42(6):735-754.
[7] 黄蓓, 钱春香. 掺合料混凝土的毛细吸水现象[J]. 混凝土与水泥制品, 2008(4):14-16.
[8] 李淑红, 王立成. 多孔建筑材料毛细吸水过程研究进展综述[J]. 水利与建筑工程学报, 2010, 8(6):16-20.
[9] Washburn E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3):273-283.
[10] Fries N, Dreyer M. An analytic solution of capillary rise restrained by gravity[J]. Journal of Colloid & Interface Science, 2008, 320(1):259-263.
[11] Kim E, Whitesides G M. Imbibition and flow of wetting liquids in noncircular capillaries[J]. Journal of Physical Chemistry B, 1997, 101(6):855-863.
[12] Cai J, Yu B, Zou M, et al. Fractal characterization of spontaneous co-current imbibition in porous media[J]. Energy & Fuels, 2010, 24(1):1860-1867.
[13] 李科, 贾志刚, 余宏明,等. 石膏质岩毛细吸水特性与孔隙特征研究[J]. 长江科学院院报, 2014, 31(9):79-83.
[14] 任凯, 葛洪魁, 杨柳,等. 页岩自吸实验及其在返排分析中的应用[J]. 科学技术与工程, 2015, 15(30):106-109.
[15] 贾志刚, 齐平, 李科,等. 岩石毛细吸水试验新方法[J]. 长江科学院院报, 2015(5):95-99.
[16] 查甫生, 刘松玉, 杜延军,等. 基于电阻率法的膨胀土吸水膨胀过程中结构变化定量研究[J]. 岩土工程学报, 2008(12):1832-1839.
[17] Roels S, Carmeliet J. Analysis of moisture flow in porous materials using microfocus X-ray radiography[J]. International Journal of Heat & Mass Transfer, 2006, 49(s 25/26):4762-4772.
[18] Hanzic, Ilic R. Relationship between liquid and capillary in concrete[J]. Cement and Concrete Research, 2003, 33(9):1385-1388.
[19] 蒙冕模, 葛洪魁, 纪文明,等. 基于核磁共振技术研究页岩自发渗吸过程[J]. 特种油气藏, 2015(5):137-140.
[20] Holmes W M, Packer K J. Investigation of two phase flow and phase trapping by secondary imbibition within Fontainebleau sandstone[J]. Magnetic Resonance Imaging, 2003, 21(s 3/4):389-391.
[21] 周莉, 何满潮, 李京阳,等. 砂岩吸水特性试验[J]. 解放军理工大学学报(自然科学版), 2009, 10(6):580-585.
[22] 司文朋, 魏建新, 狄帮让,等. 人造砂岩制作方法及其声学性质研究[J]. 地球物理学进展, 2013, 28(4):2193-2198.
[23] Nestle N. NMR relaxometry study of cement hydration in the presence of different oxidic fine fraction materials[J]. Solid State Nuclear Magnetic Resonance, 2004, 25(1/3):80-83,84.
[24] Tziotziou M, Karakosta E, Karatasios I, et al. Application of 1H NMR to hydration and porosity studies of lime-pozzolan mixtures[J]. Microporous & Mesoporous Materials, 2011, 139(1-3):16-24.
[25] 俎栋林. 核磁共振成像学[M]. 北京:高等教育出版社, 2004.
[26] Jiang T, George Hirasaki A, Miller C, et al. Diluted bitumen water-in-oil emulsion stability and characterization by nuclear magnetic resonance (NMR) measurements†[J]. Energy & Fuels, 2007, 21(3):1325-1336.
[27] Sabir B B, Wild S, O'Farrell M. A water sorptivity test for mortar and concrete[J]. Materials & Structures, 1998, 31(8):568-574.
[28] Martys N S, Ferraris C F. Capillary transport in mortars and concrete[J]. Cement & Concrete Research, 1997, 27(5):747-760.
[29] Wilson M A, Hoff W D, Hall C. Water movement in porous building materials-XI. Capillary absorption from a hemispherical cavity[J]. Building & Environment, 1994, 29(1):99-104.
[30] Roels S. A comparison of different techniques to quantify moisture content profiles in porous building materials[J]. Journal of Thermal Envelope & Building Science, 2004, 27:261-276.
[31] Lockington D A, Parlange J Y, Lenkopane M. Capillary absorption in porous sheets and surfaces subject to evaporation[J]. Transport in Porous Media, 2007, 68(1):29-36. |