[1] Xiao X, Zhang P, Li M. Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage[J]. Energ Convers Manage, 2013, 73(73):86-94.
[2] Singh S P, Vijay B. Applications of organic phase change materials for thermal comfort in buildings[J]. Rev Chem Eng, 2014, 30(5):521-538.
[3] Sarier N, Onder E. Organic phase change materials and their textile applications:an overview[J].Thermochimica Acta, 2012, 540(1):7-60.
[4] 冷光辉,蓝志鹏,葛志伟,等.储热材料研究进展[J].储能科学与技术, 2015, 4(2):119-130.
[5] Giro-Paloma J, Konuklu Y, Fernández A I. Preparation and exhaustive characterization of paraffin or palmitic acid microcapsules as novel phase change material[J]. Sol Energy, 2015, 112(112):300-309.
[6] Alkan C, Sari A. Fatty acid/poly (methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage[J]. Sol Energy, 2008, 82(2):118-124.
[7] Zhong L, Zhang X, Luan Y, et al. Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite[J]. Sol Energy 2014, 107(9):63-73.
[8] Song Q, Li Y, Xing J, et al. Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles[J]. Polymer, 2007, 48(11):3317-3323.
[9] Johnston J H, Grindrod J E, Dodds M, et al. Composite nano structured calcium silicate phase change materials for thermal buffering in food packaging[J]. Curr Appl Phys, 2008, 8(3/4):508-511.
[10] Yang H, Feng L, Wang C, et al. Confinement effect of SiO2 framework on phase change of PEG in shape-stabilized PEG/SiO2composites[J]. Eur Polym J, 2012, 48(4):803-810.
[11] Zhang L, Shi H, Li W, et al. Structure and thermal performance of poly(ethylene glycol) alkyl ether (Brij)/porous silica (MCM-41) composites as shape-stabilized phase change materials[J]. Thermochim Acta, 2013, 570(9):1-7.
[12] Huang X, Dong W, Wang G, et al. Synthesis of confined Ag nanowires within mesoporous silica via double solvent technique and their catalytic properties[J]. J Colloid Interf Sci, 2011, 359(1):40-46.
[13] Zhou Y, Wang Y, Zhang J H, et al. Hot probe method for measuring thermal conductivity of copper nano-particles/paraffin composite phase change materials[J]. Key Engineering Materials, 2013, 561:428-434.
[14] Bischof C, Hartmann M. Synthesis and characterization of ruthenium-containing MCM-41 and MCM-48 mesoporous materials[C]//Treacy M M J, Marcus B K, Bisher M E, et al. Proceedings of the 12th International Zeolite Conference. Warrendale, PA:Materials Research Society, 1999:809-816.
[15] Adhyapak P V, Karandikar P, Vijayamohanan K, et al. Syhthesis of Silver Nanowires inside Mesoporous MCM-41 Host[J]. Mater Lett, 2004, 58(58):1168-1171.
[16] Ciuparu D, Chen Y, Lim S, et al. Uniform-diameter single-walled carbon nanotubes catalytically grown in cobalt-incorporated MCM-41[J]. J Phys Chem B, 2004, 108(2):503-507.
[17] Lai S L, Carlsson J R A, Allen L H. Melting point depression of Al clusters generated during the early stages of film growth:nanocalorimetry measurements[J]. Appl phys Lett, 1998, 72(9):1098-1100.
[18] Sun J, Simon S L. The melting behavior of aluminum nanoparticles[J]. Thermochim Acta, 2007, 463(1):32-40.
[19] Alavi S, Thompson D L. Molecular dynamics simulations of the melting of aluminum nanoparticles[J]. J Phys Chem A, 2006, 110(4):1518-1523. |