[1] Pendyala R, Jayanti S, Balakrishnan A R. Convective heat transfer in single-phase flow in a vertical tube subjected to axial low frequency oscillations[J]. Heat & Mass Transfer, 2008, 44(7):857-864.
[2] 贾辉, 谭思超, 高璞珍,等. 摇摆引起的波动对单相自然循环换热的影响[J]. 核动力工程, 2010, 31(s1):44-48.
[3] 谭思超, 高璞珍, 苏光辉. 摇摆运动条件下自然循环复合型脉动的实验研究[J]. 原子能科学技术, 2008, 42(11):1007-1011.
[4] Yan B H, Yu L. The experimental and theoretical analysis of a natural circulation system in rolling motion[J]. Progress in Nuclear Energy, 2012, 54(1):123-131.
[5] Chang S W, Huang B J. Thermal performances of corrugated channel with skewed wall waves at rolling and pitching conditions[J]. International Journal of Heat & Mass Transfer, 2012, 55(s 17/18):4548-4565.
[6] 林玮, 杨申音, 陈光明,等. 船舶摇摆振动对传热和制冷系统的影响研究述评[J]. 制冷学报, 2014, 35(3):8-15.
[7] Chen X, Wang G, Zhu Y, et al. Real-time simulation of ship motions in waves[M]//Advances in Visual Computing. Springer Berlin Heidelberg, 2012:71-80.
[8] Tan S, Wang Z, Wang C, et al. Flow fluctuations and flow friction characteristics of vertical narrow rectangular channel under rolling motion conditions[J]. Experimental Thermal & Fluid Science, 2013, 50(6):69-78.
[9] Wang C, Wang S, Wang H, et al. Investigation of flow pulsation characteristic in single-phase forced circulation under rolling motion[J]. Annals of Nuclear Energy, 2014, 64:50-56.
[10] Xing D, Yan C, Sun L, et al. Effect of rolling motion on single-phase laminar flow resistance of forced circulation with different pump head[J]. Annals of Nuclear Energy, 2013, 54(54):141-148.
[11] Kato Y, Nitawaki T, Muto Y. Medium temperature carbon dioxide gas turbine reactor[J]. Nuclear Engineering & Design, 2004, 230(1-3):195-207.
[12] Moisseytsev A, Sienicki J J. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor[J]. Nuclear Engineering & Design, 2009, 239(7):1362-1371.
[13] He S, Kim W S, Jackson J D. A computational study of convective heat transfer to carbon dioxide at a pressure just above the critical value[J]. Applied Thermal Engineering, 2008, 28(13):1662-1675.
[14] Zhao Z, Che D. Numerical investigation of conjugate heat transfer to supercritical CO in a vertical tube-in-tube heat exchanger[J]. Numerical Heat Transfer Applications, 2014, 67(8):857-882.
[15] He S, Kim W S, Bae J H. Assessment of performance of turbulence models in predicting supercritical pressure heat transfer in a vertical tube[J]. International Journal of Heat & Mass Transfer, 2008, 51(19/20):4659-4675.
[16] Sharabi M, Ambrosini W, He S, et al. Prediction of turbulent convective heat transfer to a fluid at supercritical pressure in square and triangular channels[J]. Annals of Nuclear Energy, 2008, 35(6):993-1005.
[17] Yang J, Oka Y, Ishiwatari Y, et al. Numerical investigation of heat transfer in upward flows of supercritical water in circular tubes and tight fuel rod bundles[J]. Nuclear Engineering & Design, 2007, 237(4):420-430.
[18] Zhao Z, Che D, Wu J, et al. Numerical investigation on conjugate cooling heat transfer to supercritical CO2 in vertical double-pipe heat exchangers[J]. Numerical Heat Transfer,Part A:Applications, 2016, 69(5):512-528.
[19] Tan S C, Su G H, Gao P Z. Heat transfer model of single-phase natural circulation flow under a rolling motion condition[J]. Nuclear Engineering & Design, 2009, 239(10):2212-2216.
[20] Yan B H, Gu H Y. CFD analysis of flow and heat transfer of turbulent pulsating flow in a tube in rolling motion[J]. Annals of Nuclear Energy, 2011, 38(9):1833-1841. |