[1] 李剑睿, 徐应明, 林大松, 等. 农田重金属污染原位钝化修复研究进展[J]. 生态环境学报, 2014, 23(4):721-728.
[2] 杨世琦, 刘国强, 张爱平, 等. 典型区域果园表层土壤5种重金属累积特征[J]. 生态学报, 2010, 30(22):6201-6207.
[3] 孙清斌, 尹春芹, 邓金锋, 等. 大冶矿区周边农田土壤和油菜重金属污染特征研究[J]. 农业环境科学学报, 2012, 31(1):85-91.
[4] 赵其国, 黄国勤, 钱海燕. 生态农业与食品安全[J]. 土壤学报, 2007, 44(6):1127-1134.
[5] 韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展[J]. 生态学报, 2001, 21(7):1196-1203.
[6] 王玉军, 刘存, 周东美, 等. 客观地看待我国耕地土壤环境质量的现状:关于《全国土壤污染状况调查公报》中有关问题的讨论和建议[J]. 农业环境科学学报, 2014, 33(8):1465-1473.
[7] 曹心德, 魏晓欣, 代革联, 等. 土壤重金属复合污染及其化学钝化修复技术研究进展[J].环境工程学报, 2011, 5(7):1441-1453.
[8] 崔德杰, 张玉龙. 土壤重金属污染现状与修复技术研究进展[J]. 土壤通报, 2004, 35(3):366-370.
[9] Brown S, Christensen B, Lombi E, et al. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ[J]. Environmental Pollution, 2005, 138(1):34-45.
[10] 刘昭兵, 纪雄辉, 王国祥, 等. 赤泥对Cd污染稻田水稻生长及吸收累积Cd的影响[J]. 农业环境科学学报, 2010, 29(4):692-697.
[11] 吴川, 黄柳, 薛生国, 等. 赤泥对砷污染的调控研究进展[J]. 环境化学, 2016, 35(1):141-149.
[12] Zhu F, Zhou J Y, Xue S G, et al. Aging of bauxite residue in association of regeneration:a comparison of methods to determine aggregate stability & erosion resistance[J]. Ecological Engineering, 2016, 92(3):47-54.
[13] 谢运河, 纪雄辉, 黄涓, 等. 赤泥、石灰对Cd污染稻田改制玉米吸收积累Cd的影响[J]. 农业环境科学学报, 2014, 33(11):2104-2110.
[14] 张书武, 刘昌俊, 栾兆坤, 等. 铁改性赤泥吸附剂的制备及其除砷性能研究[J]. 环境科学学报, 2007, 27(12):1972-1977.
[15] Lombi E, Zhao F J, Zhang G, et al. In situ fixation of metals in soils using bauxite residue:chemical assessment[J]. Environmental Pollution, 2002, 118(3):435-443.
[16] 黄蔼霞, 许超, 吴启堂, 等. 赤泥对重金属污染红壤修复效果及其评价[J]. 水土保持学报, 2012, 26(1):267-272.
[17] 梁玉英, 黄益宗, 朱永官, 等. 赤泥对土壤磷素释放的影响[J]. 农业环境科学学报, 2007, 26(1):286-289.
[18] 罗惠莉, 黄圣生, 罗琳, 等. 赤泥-磷复合颗粒用于矿区污土中铅化学固定的效应分析[J]. 中国有色金属学报, 2011, 21(9):2277-2284.
[19] 王立群, 罗磊, 马义兵, 等. 不同钝化剂和培养时间对Cd污染土壤中可交换态Cd的影响[J]. 农业环境科学学报, 2009, 28(6):1098-1105.
[20] Lee S H, Lee J S, Choi Y J, et al. In situ stabilization of cadmium, lead, and zinc-contaminated soil using various amendments[J]. Chemosphere, 2009, 77(8):1069-1075.
[21] Friesl W, Horak O, Wenzel W W. Immobilization of heavy metals in soils by the application of bauxite residues:pot experiments under field conditions[J]. Journal of Plant Nutrition & Soil Science, 2004, 167(1):54-59.
[22] Yan X L, Lin L Y, Liao X Y, et al. Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng[J]. Chemosphere, 2013, 93(4):661-667.
[23] 陈炳睿, 徐超, 吕高明, 等. 6种固化剂对土壤Pb Cd Cu Zn的固化效果[J]. 农业环境科学学报, 2012, 31(7):1330-1336.
[24] Koo N, Lee S H, Kim J G. Arsenic mobility in the amended mine tailings and its impact on soil enzyme activity[J]. Environmental Geochemistry and Health, 2012, 34(3):337-348.
[25] 刘小诗. 砷镉超标农田钝化剂的筛选及调控效应研究[D]. 北京:中国农业科学院, 2015.
[26] 刘铭, 刘凤枝, 刘保峰. 土壤中有效态铅和镉的测定[J]. 农业环境科学学报, 2006, 26(S1):300-302.
[27] Woolson E A, Axley J H, Kearney P C. Correlation between available soil arsenic, estimated by six methods, and response of corn (Zea mays L.)[J]. Soil Science Society American Journal, 1971, 35(1):101-105.
[28] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 1999:147-211.
[29] Altundogan H S, Altundogan S, Tümen F, et al. Arsenic adsorption from aqueous solutions by activated red mud[J]. Waste Management, 2002, 22(3):357-363.
[30] 孙国红, 李剑睿, 徐应明, 等. 不同水分管理下镉污染红壤钝化修复稳定性及其对氮磷有效性的影响[J]. 农业环境科学学报, 2015, 34(11):2105-2113.
[31] Singh B R, Myhr K. Cadmium uptake by barley as affected by Cd sources and pH levels[J]. Geoderma, 1998, 84(1-3):185-194.
[32] Snars K E, Gilkes R J, Wong M T F. The liming effect of bauxite processing residue (red mud) on sandy soils[J]. Soil Research, 2004, 42(3):321-328.
[33] Punshon T, Adriano D C, Weber J T. Effect of flue gas desulfurization residue on plant establishment and soil and leachate quality.[J]. Journal of Environmental Quality, 2001, 30(3):1071-1080.
[34] Hartley W, Edwards R, Lepp N W. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short-and long-term leaching tests[J]. Environmental Pollution, 2004, 131(3):495-504.
[35] 魏建宏, 罗琳, 刘艳, 等. 赤泥颗粒和赤泥对污染土壤镉形态分布及水稻吸收的效应[J]. 农业环境科学学报, 2012, 31(2):318-324.
[36] 田杰, 罗琳, 范美蓉, 等. 赤泥对污染土壤中Cd, Pb和Zn形态及水稻生长的影响[J]. 土壤通报, 2012, 43(1):195-199.
[37] 李凝玉, 郭彬,傅庆林, 等. 改性明矾浆对土壤中镉、铅可提取性的影响研究[J]. 农业环境科学学报, 2014, 33(8):1526-1531.
[38] 郝晓伟, 黄益宗, 崔岩山, 等. 赤泥对污染土壤Pb、Zn化学形态和生物可给性的影响[J]. 环境工程学报, 2010, 4(6):1431-1435.
[39] 郭观林, 周启星, 李秀颖. 重金属污染土壤原位化学固定修复研究进展[J]. 应用生态学报, 2005, 16(10):1990-1996.
[40] 符建荣. 土壤中铅的积累及污染的农业防治[J]. 农业环境科学学报, 1993, 12(5):223-226.
[41] 卢明, 屠乃美, 胡华勇. 氯化铁和硫酸铁对酸性土壤中有效态镉和铅污染的修复作用[J]. 环境工程学报, 2015, 9(1):469-476.
[42] 熊仕卷, 徐卫红, 谢文文, 等. 纳米沸石对土壤Cd形态及大白菜Cd吸收的影响[J]. 环境科学, 2015, 36(12):4630-4641.
[43] 朱雁鸣, 韦朝阳, 冯人伟, 等. 三种添加剂对矿冶区多种重金属污染土壤的修复效果评估:大豆苗期盆栽实验[J]. 环境科学学报, 2011, 31(6):1277-1284.
[44] 郭利敏, 艾绍英, 唐明灯, 等. 不同改良剂对镉污染土壤中小白菜吸收镉的影响[J]. 中国生态农业学报, 2010, 18(3):654-658.
[45] Lombi E, Zhao F J, Zhang G, et al. In situ fixation of metals in soils using bauxite residue:chemical assessment[J]. Environmental Pollution, 2002, 118(3):435-443.
[46] Lee S H, Kim E Y, Park H, et al. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products[J]. Geoderma, 2011, 161(1):1-7.
[47] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7):844-851.
[48] Komárek M, Vaněk A, Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides:a review[J]. Environmental Pollution, 2013, 172(172C):9-22.
[49] 郝晓伟, 黄益宗, 崔岩山, 等. 赤泥和骨炭对污染土壤As化学形态及其生物可给性的影响[J]. 环境化学, 2010, 29(3):383-387.
[50] Yang L. Simultaneous removal of fluoride and arsenic from aqueous solution using activated red mud[J]. Separation Science & Technology, 2014, 49(15):2412-2425.
[51] 罗遥, 康荣华, 余德祥, 等. 脱硫石膏对酸化森林土壤短期修复效果的研究[J]. 环境科学, 2012, 33(6):2006-2012.
[52] 李娟, 刘新春, 余志晟, 等. 煤渣吸附水中氟和砷的研究[J]. 中国科学院大学学报, 2014, 31(4):471-476.
[53] Hartley W, Edwards R, Lepp N W. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short-and long-term leaching tests[J]. Environmental Pollution, 2004, 131(3):495-504.
[54] 纪雄辉, 梁永超, 鲁艳红, 等. 污染稻田水分管理对水稻吸收积累镉的影响及其作用机理[J]. 生态学报,2007,27(9):3930-3939.
[55] Wang S, Ang H M, Tadé M O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes[J]. Chemosphere, 2008, 72(11):1621-1635.
[56] Brunori C, Cremisini C, Massanisso P, et al. Reuse of a treated red mud bauxite waste:studies on environmental compatibility[J]. Journal of Hazardous Materials, 2005, 117(1):55-63. |