[1] 张金川, 金之钧,袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7):15-18.
[2] Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(11/12):848-861.
[3] 卜红玲,琚宜文,王国昌,等. 淮南煤田煤系泥页岩组成特征及吸附性能[J]. 中国科学院大学学报,2015, 32(1):82-90.
[4] Bai B J, Elgmati M, Zhang H, et al. Rock characterization of fayetteville shale gas plays[J]. Fuel, 2013, 105:645-652.
[5] Binnion M. How the technical differences between shale gas and conventional gas projects lead to a new business model being required to be successful[J]. Marine and Petroleum Geology, 2012, 31(1):3-7.
[6] 蒋恕. 页岩气开发地质理论创新与钻完井技术进步[J]. 石油钻探技术, 2011, 39(3):17-23.
[7] Guo T K, Zhang S C, Qu Z Q, et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J]. Fuel, 2014, 128:373-380.
[8] Barati R, Liang J T. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells[J]. Journal of Applied Polymer Science, 2014, 131(16):1-11.
[9] Cawiezel K E, Gupta D V S. Successful optimization of viscoelastic foamed fracturing fluids with ultralightweight proppants for ultralow-permeability reservoirs[J]. SPE Production & Operations, 2010, 25(1):80-88.
[10] Rahm D. Regulating hydraulic fracturing in shale gas plays:the case of texas[J]. Energy Policy, 2011, 39(5):2974-2981.
[11] Palisch T T, Vincent M C, Handren P J. Slickwater fracturing:food for thought[J]. SPE Production & Operations, 2010, 25(3):327-344.
[12] Nicot J P, Scanlon B R. Water use for shale-gas production in Texas, US[J]. Environmental Science & Technology, 2012, 46(6):3580-3586.
[13] 张磊,康钦军,姚军, 等. 页岩压裂中压裂液返排率低的孔隙尺度模拟与解释[J]. 科学通报, 2014, 59(32):3197-3203.
[14] Aybar U, Eshkalak M O, Sepehrnoori K, et al. The effect of natural fracture's closure on long-term gas production from unconventional resources[J]. Journal of Natural Gas Science and Engineering, 2014, 21:1205-1213.
[15] Zhang G, Chen M. Dynamic fracture propagation in hydraulic re-fracturing[J]. Journal of Petroleum Science and Engineering, 2010, 70(3/4):266-272.
[16] 唐颖,张金川, 张琴, 等. 页岩气井水力压裂技术及其应用分析[J]. 天然气工业, 2010, 33(10):33-38,117.
[17] Kang Y L, Xu C Y, You L J, et al. Comprehensive evaluation of formation damage induced by working fluid loss in fractured tight gas reservoir[J]. Journal of Natural Gas Science and Engineering, 2014, 18:353-359.
[18] Reinicke A, Rybacki E, Stanchits S, et al. Hydraulic fracturing stimulation techniques and formation damage mechanisms-implications from laboratory testing of tight sandstone-proppant systems[J]. Chemie der Erde-Geochemistry, 2010, 70(3):107-117.
[19] Wang J Y, Holditch S A, Mcvay D A. Effect of gel damage on fracture fluid cleanup and long-term recovery in tight gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2012, 9:108-118.
[20] Yan Q, Lemanski C, Karpyn Z T, et al. Experimental investigation of shale gas production impairment due to fracturing fluid migration during shut-in time[J]. Journal of Natural Gas Science and Engineering, 2015, 24:99-105.
[21] 董大忠, 邹才能, 戴金星, 等. 中国页岩气发展战略对策建议[J]. 天然气地球科学, 2016, 27(3):397-406.
[22] 朱麟勇, 马昌期, 李妙贞, 等. 水溶性AM/AA/AMPS共聚物的高温水解[J]. 应用化学, 2000, 17(2):117-120.
[23] 孙小明, 武雄, 何满潮, 等. 强膨胀性软岩的判别与分级标准[J]. 岩石力学与工程学报, 2005, 24(1):128-132.
[24] 赵明, 季峻峰, 陈振岩, 等. 大民屯凹陷古近系高岭石亚族和伊/蒙混层矿物特征与盆地古温度[J]. 中国科学:地球科学, 2011, 41(2):169-180.
[25] 朱宝龙, 李晓宁, 巫锡勇, 等. 黑色页岩遇水膨胀微观特征试验研究[J]. 岩石力学与工程学报, 2015,34(S2):3896-3905.
[26] 陈尚斌,朱炎铭,王红岩,等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报,2012, 37(3):438-444.
[27] 杨峰, 宁正福, 张世栋, 等. 基于氮气吸附实验的页岩孔隙结构表征[J]. 天然气工业, 2013, 33(4):135-140.
[28] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity[J]. Pure and Applied Chemistry, 1985, 57(4):603-619.
[29] 康毅力, 陈德飞, 李相臣. 压裂液处理对煤岩孔隙结构的影响[J]. 中国石油大学学报(自然科学版), 2014, 38(5):102-108. |