[1] Goodenough J B, Park K S. The Li-ion rechargeable battery:a perspective[J]. Journal of the American Chemical Society, 2013, 135(4):1167-1176.
[2] Manthiram A, Fu Y, Yusheng S. In charge of the world:electrochemical energy storage[J]. Journal of Physical Chemistry Letters, 2013, 4(8):1295-1297.
[3] Song K, Seo D H, Jo M R, et al. Tailored oxygen framework of Li4Ti5O12 nanorods for high-power Li ion battery[J]. Journal of Physical Chemistry Letters, 2014, 5(8):1368-1373.
[4] Takamatsu D, Nakatsutsumi T, Mori S, et al. Nanoscale observation of the electronic and local structures of LiCoO2thin film electrode by depth-resolved X-ray absorption spectroscopy[J]. Journal of Physical Chemistry Letters, 2011, 2(20):2511-2514.
[5] Meini S, Elazari R, Rosenman A, et al. The use of Redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems[J]. Journal of Physical Chemistry Letters, 2014,5(5):915-918.
[6] Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide:a high-capacity lithium-ion-storage material[J]. Science, 1997, 276(5317):1395-1397.
[7] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367.
[8] Oyama N, Tatsuma T, Sato T, et al. Dimercaptan-polyaniline composite electrodes for lithium batteries with high energy density[J]. Nature, 1995, 373(6515):598-600.
[9] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657.
[10] Dubal D P, Ayyad O, Ruiz V, et al. Hybrid energy storage:the merging of battery and supercapacitor chemistries[J]. Chemical Society Reviews, 2015, 44:1777-1790.
[11] Simon P, Gogotsi Y, Dunn B. Where Do Batteries end and supercapacitors begin[J]. Science Magazine, 2014, 343(6176):1210-1211.
[12] Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4:366-377.
[13] Dahn J R, Zheng T, Liu Y, et al. Mechanisms for lithium insertion in carbonaceous materials[J]. Science, 1995, 270(5236):590-593.
[14] Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advance Materials, 1998, 10(10):725-763.
[15] Fang W Z, Zhang L C, Yan Q B, et al. Effects of strain on mechanical and electronic properties of SnSe and SnS auxetic materials[J]. Journal of University of Chinese Academy of Sciences, 2017, 34(1):8-14.
[16] Kang Y, Gong Y J, Hu Z J, et al. Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution[J]. Nanoscale, 2015, 7:4482-4488.
[17] Kang Y, Najmaei S, Liu Z, et al. Plasmonic hot electron induced structural phase transition in a MoS2 Monolayer[J]. Advanced Materials. 2014, 26(37), 6467-6471.
[18] Peigney A, Laurent Ch, Flahaut E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J]. Carbon, 2001, 39(4):507-514.
[19] Novoselov K S, Geim A K, Jiang D, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[20] Trushin M, Schliemann J. Minimum Electrical and thermal conductivity of graphene:a quasiclassical approach[J]. Physical Review Letters, 2007, 99(21):216602.
[21] Allen M J, Tung V C, Kaner R B. Honeycomb carbon:a review of graphene[J]. Chemical Reviews, 2010, 110(1):132-145.
[22] Khantha M, Cordero N A, Molina L M, et al. Interaction of lithium with graphene:an ab initio study[J]. Physical Review B, 2004, 70(12):125422.
[23] Fan X F, Zheng W T, Kuo J L. Adsorption and diffusion of Li on pristine and defective graphene[J]. ACS Applied Materials & Interfaces, 2012, 4(5):2432-2438.
[24] Liu Y, I V L, Liu M J, et al. Feasibility of lithium storage on graphene and its derivatives[J]. Journal of Physical Chemistry Letters, 2013, 4(10):1737-1742.
[25] Jing Y, Zhou Z, Cabrera C R, et al. Graphene, inorganic graphene analogs and their composites for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2:12104-12122.
[26] Wan W, W H D. First-Principles Investigation of adsorption and diffusion of ions on pristine, defective and B-doped Graphene[J]. Materials, 2015, 8(9):6163-6178.
[27] Lee S K, Rana K, Ahn J H. Graphene films for flexible organic and energy storage devices[J]. Journal of Physical Chemistry Letters, 2013, 4(5):831-841.
[28] Li Y F, Wu D H, Zhou Z, et al. Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects:a computational study[J]. Journal of Physical Chemistry Letters, 2012, 3(16):2221-2227.
[29] Ding S, Zhang D, Chen J S, et al. Facile synthesis of hierarchical Mo S2 microspheres composed of few-layered nanosheets and their lithium storage properties[J]. Nanoscale, 2012, 4:95-98.
[30] Du G, Guo Z, Wang S, Zeng R, et al. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries[J]. Chemical Communication, 2010, 46:1106-1108.
[31] Hwang H, Kim H, Cho J. MoS2 Nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano Letters, 2011, 11(11):4826-4830.
[32] Liu H, Su D, Zhou R, et al. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage[J]. Advanced Energy Materials, 2012, 2(8):970-975.
[33] Julien C, Saikh S I, Nazri G A. Electrochemical studies of disordered MoS2 as cathode material in lithium batteries[J]. Material Science and Engineering B, 1992, 15(1):73-77.
[34] Gen C G, Wei X L, Wang D, et al. Pristine and defect-containing phosphorene as promising anode materials for rechargeable Li batteries[J]. Journal of Materials Chemistry A, 2015, 3:11246-11252.
[35] Yao Q S, Huang C X, Yuan Y B, et al.Theoretical prediction of phosphorene and nanoribbons as fast-charging Li ion battery anode materials[J]. Journal of Physical Chemistry C, 2015, 119(12):6923-6928.
[36] Li W J, Chou S L, Wang J Z, et al. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage[J]. Nano Letters, 2013, 13(11):5480-5484.
[37] Liu H, Neal A T, Zhu Z, et al. Phosphorene:an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4):4033-4041.
[38] Li W F, Yang Y M, Zhang G, et al. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery[J]. Nano Letters, 2015, 15(3):1691-1697.
[39] Zhang R Q, Wu X J, Yang J L. Blockage of ultrafast and directional diffusion of Li atoms on phosphorene with intrinsic defects[J]. Nanoscale, 2016, 8, 4001-4006.
[40] Karmakar S, Chowdhury C, Datta A. Two-dimensional group IV monochalcogenides:anode materials for Li-ion batteries[J]. Journal of Physical Chemistry C, 2016, 120(27):14522-14530.
[41] Im H S, Lim Y R, Cho Y J, et al. Germanium and Tin Sele nide nanocrystals for high-capacity lithium ion batteries:comparative phase conversion of germanium and tin[J]. Journal of Physical Chemistry C, 2014, 118(38):21884-21888.
[42] Kim Y J, Kim Y L, Park Y, et al. SnSe alloy as a promising anode material for Na-ion batteries[J]. Chemical Communications, 2015, 51:50-53.
[43] Zhu Z, Guan J, Liu D, et al. Designing isoelectronic counterparts to layered group V semiconductors[J]. ACS Nano, 2015, 9(8):8284-8290.
[44] Gomes L C, Carvalho A. Phosphorene analogues:isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure[J]. Physical Review B, 2015, 92(8):085406.
[45] Zhuo L H, Wu Y Q, Wang L Y, et al. One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries[J]. RSC Advances, 2012, 2:5084.
[46] Shi J, Shi W, Jin W, et al. Diffusion of lithium in α-Sn and β-Sn as anode materials for lithium ion batteries[J]. International Journal of Electrochemical Science, 2015, 10:4793-4800.
[47] Gao P, Wang L P, Zhang Y, et al. High-resolution tracking asymmetric lithium insertion and extraction and local structure ordering in SnS2[J]. Nano Letters, 2016, 16(9):5582-5588.
[48] Huang Y C, Ling H Y, Chen X, et al. SnS2 nanotubes:a promising candidate for theanode material for lithium ion batteries[J]. RSC Advances, 2015, 5:32505-32510.
[49] Kresse G, Furthmuller J. Efficienct iterative schemes for initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169.
[50] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B:Condensed Matter Mater. Phys, 1999, 59(3):1758.
[51] Vanderbilt D. Soft Self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B:Condensed Matter Mater. Phys, 1990, 41(11):7892.
[52] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865.
[53] Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. Journal of Chemistry Physical, 2000, 113(22):9978-9985.
[54] Sanville E, Kenny S D, Smith R, et al. Improved grid-based algorithm for bader charge allocation[J]. Journal of Computational Chemistry, 2007, 28(5):899-908.
[55] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Computer& Chemistry, 2006, 27(15):1787-1799.
[56] Jing Y, Zhou Z, Cabrera C R, et al. Metallic VS2 monolayer:a promising 2D anode material for lithium ion batteries[J]. Journal of Physical Chemistry C, 2013, 117(48):25409-25413.
[57] Yan W, Richards W D, Ong S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14:1026-1031. |