[1] Castaldi F, Palombo A, Santini F, et al. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon[J]. Remote Sensing of Environment, 2016, 179:54-65.
[2] Tian Y, Guo P, Lyu M R. Comparative studies on feature extraction methods for multispectral remote sensing image classification[C]//Systems Man and Cybernetics. Waikoloa HI:IEEE, 2006:1275-1279.
[3] Kaur R, Sehgal S. Dimension reduction of multispectral data using canonical analysis[J]. International Journal of Computer Applications, 2014,70(21):18-21.
[4] Jaime Z, Ren J, Ren J. Structured covariance principal component analysis for real-time onsite feature extraction and dimensionality reduction in hyperspectral imaging[J]. Applied Optics, 2014, 53(20):4440-4449.
[5] Wold S, Esbensen K, Geladi P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1):37-52.
[6] Green A A, Berman M, Switzer P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1):65-74.
[7] Lee J B, Woodyatt A S, Berman M. Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3):295-304.
[8] Wang C, Zhang J, Gu Y. Target detection for hyperspectral images using ICA-based feature extraction[C]//Geoscience and Remote Sensing Symposium. Denver CO:IEEE, 2006:850-853.
[9] Ren H, Du Q, Wang J, et al. Automatic target recognition for hyperspectral imagery using high-order statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4):1372-1385.
[10] Gu Y, Liu Y, Zhang Y. A selective KPCA algorithm based on high-order statistics for anomaly detection in hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1):43-47.
[11] Wang N, Du B, Zhang L. An abundance caracteristic-based independent component analysis for hyperspectralunmixing[J]. IEEE Geoscience and Remote Sensing, 2015, 3(1):416-428.
[12] Wang J, Chang C. Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery[J]. International Society for Optical Engineering, 2006, 44(9):2601-2616.
[13] Lennon M, Mercier G, Mouchot MC, et al. Independent component analysis as a tool for the dimensionality reduction and the representation of hyperspectral images[C]//Geoscience and Remote Sensing Symposium. Sydney NSW:IEEE, 2001, 6(3):2893-2895.
[14] Hyvarinen A, Oja E, Hoyer P, et al. Image feature extraction by sparse coding and Independent component analysis[C]//Pattern Recognition. Brisbane:IEEE, 1998, 2:1268-1273.
[15] Comon P. Independent component analysis, a new concept?[J]. Signal Processing, 1994, 36(3):287-314.
[16] Chen P, Hung H, Komori O, et al. Robust independent component analysis via minimum-divergence estimation[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(4):614-624.
[17] Shen H, Gretton A. Fast kernel-based independent component analysis[J]. IEEE Transactions on Signal Processing, 2009, 57(9):3498-3511.
[18] Karvanen J, Koivunen V. Independent component analysis via optimum combining of kurtosis and skewness-based criteria[J]. Journal of the Franklin Institute, 2004, 341(5):401-418.
[19] Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3):626-634.
[20] Hyvärinen A, Köster U. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation, 1997, 9(7):1483-1492. |