[1] Hall E H. On a new action of the magnet on electric currents[J]. American Journal of Mathematics, 1879, 2(3):287.
[2] Haldane F D M. Model for a quantum hall effect without landau levels:condensed-matter realization of the "parity anomaly"[J]. Physical Review Letters, 1988, 61(18):2015-2018.
[3] Weng H M, Yu R, Hu X, et al. Quantum anomalous hall effect and related topological electronic states[J]. Advances in Physics, 2015, 64(3):227-282.
[4] Liu C X, Zhang S C, Qi X L. The quantum anomalous Hall effect:theory and experiment[J]. Annual Review of Condensed Matter Physics, 2016,7(1):301-321.
[5] Ren Y F, Qiao Z H, Niu Q. Topological phases in two-dimensional materials:a review[J]. Reports on Progress in Physics, 2016, 79(6):066501.
[6] Nagaosa N, Sinova J, Shigeki O, et al. Anomalous Hall effect[J]. Reviews of Modern Physics, 2010, 82(2):1539-1592.
[7] Kane C L, Mele E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters, 2005, 95(22):226801.
[8] Kou X F, Fan Y B, Lang M R, et al. Magnetic topological insulators and quantum anomalous Hall effect[J]. Solid State Communications, 2015, 215-216:34-53.
[9] Chun S H, Chai Y S, Yoon S O, et al. Realization of giant magnetoelectricity in helimagnets[J]. Physical Review Letters, 2010, 104(03):037204.
[10] Qiao Z H, Yang S Y, Feng W X, et al. Quantum anomalous Hall effect in graphene from Rashba and exchange effects[J]. Physical Review B, 2010, 82(16), 161414.
[11] Tse W K, Qiao Z H, Yao Y G, et al. Quantum anomalous Hall effect in single-layer and bilayer graphene[J]. Physical Review B, 2011, 83(15):155447.
[12] Xu G, Weng H M, Wang Z J, et al. Chern semimetal amd the quantized amomalous Hall effect in HgCr2Se4[J]. Physical Review Letters, 2011, 107(18):186806.
[13] Yu R, Zhang W, Zhang J H, et al. Quantized anomalous Hall effect in magnetic topological insulators[J]. Science, 2010, 329(5987):61-64.
[14] Chang C Z, Zhang J S, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J]. Science, 2013,340(6129):167-170.
[15] Jancu J M, Girard J C, Nestoklon M, et al. STM images of subsurface Mn atoms in GaAs:evidence of hybridization of surface and impurity states[J]. Physical Review Letters, 2008, 101(19):196801.
[16] Liu X, Hsu H C, Liu C X. In-plane magnetization-induced quantum anomalous Hall Effect[J]. Physical Review Letters, 2013, 111(08), 086802.
[17] Ren Y F, Zeng J J, Deng X Z, et al. Quantum anomalous Hall effect in atomic crystal layers from in-plane magnetization[J]. Physical Review B, 2016, 94(8):085411.
[18] Zhong P C, Ren Y F, Han Y L, et al. In-plane magnetization-induced quantum anomalous Hall effect in atomic crystals of group-V elements[J]. Physical Review B, 2017, 96(24):241103.
[19] Sheng X L, Nikolic B K. Monolayer of the 5d transition metal trichloride OsCl3:a playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions[J]. Physical Review B, 2017, 95(20):201402.
[20] Liu Z, Zhao G, Liu B, et al. Intrinsic quantum anomalous Hall effect with in-plane magnetization:searching rule and material prediction[J]. Physical Review Letters, 2018, 121(24):246401.
[21] Kong X R, Li L Y, Ortwin L, et al. New group-V elemental bilayers:a tunable structure model with four-, six-, and eight-atom rings[J]. Physical Review B, 2017, 96(3):035123.
[22] Klemm W, Krose E Z. Die Kristallstrukturen von ScCl3, TiCl3 and VCl3[J]. Anorg Allg Chem, 1947, 253(3/4):218-225.
[23] Feldmann D, Kirchmayr H, Schmolz A, et al. Magnetic materials analyses by nuclear spectrometry:a joint approach to Mössbauer effect and nuclear magnetic resonance[J]. IEEE Transactions on Magnetics, 1971, 7(1):61-91.
[24] Hillebrecht H, Schmidt P J, Rotter H W, et al. Structural and scanning microscopy studies of layered compounds MCl3 (M=Mo, Ru, Cr) and MOCl2 (M=V, Nb, Mo, Ru, Os)[J]. Journal of Alloys and Compounds, 1997, 246(1/2):70-79.
[25] Bengel H, Cantow H J, Magonov S. et al. Tip-force induced surface corrugation in layered transition-metal trichlorides MCl3 (M=Ru, Mo, Rh, Ir)[J]. Sur Sci, 1995, 343:95-103.
[26] Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review B, 1993, 48(17):13115-13118.
[27] Kresse G, Furthmller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186.
[28] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3):1758-1775.
[29] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.
[30] Pierre V. VCl3 crystal structure. PAULING FILE in:Inorganic Solid Phases, Springer Materials (online database)[DB/OL]. (2016-10-01)[2019-04-15]. https://materials.springer.com/isp/crystallographic/docs/sd_1902637.
[31] Mostofi A A, Yates B, Jonathan R, et al. An updated version of wannier90:a tool for obtaining maximally-localised wannier functions[J]. Computer Physics Communications, 2014,185(8):2309-2310.
[32] Lopez Sancho M P, Lopez Sancho J M, Sancho J M L, et al. Highly convergent schemes for the calculation of bulk and surface green functions[J]. Journal of Physics F:Metal Physics, 1985, 15(4):851-858.
[33] Wu Q S, Zhang S N, Song H F, et al. WannierTools:an open-source software package for novel topological materials[J]. Computer Physics Communications, 2018, 224:405-416.
[34] Khaliji K, Fallahi A, Luis M M, et al. Tunable plasmon-enhanced birefringence in ribbon array of anisotropic two-dimensional materials[J]. Physical Review B, 2017, 95(20), 201401.
[35] You J Y, Chen C, Zhang Z, et al. Two-dimensional Weyl half semimetal and tunable quantum anomalous Hall effect in monolayer PtCl3[J/OL]. arXiv:2019, 1903.08373[2019-04-15]. https://arxiv.org/abs/1903.08373v1.
[36] Hatsugai Y, Chern number and edge states in the integer quantum Hall effect[J]. Physical Review Letters, 1993, 71(22):3697-3700.
[37] Chang C Z. Realization of high-precision realization of robust quantum anomalous Hall state in a hard ferrimagnetic topological insulator[J]. Nature Material, 2015, 14(5):473-477.
[38] Ou Y, Liu C, Jiang G, et al. Enhancing the quantum anomalous Hall effect by magnetic co doping in a topological insulator[J]. Advanced Material, 2017, 30(1):1703062.
[39] He K, Wang Y, Xue Q K. Topological materials:quantum anomalous hall system[J]. Annu Rev Condens Matter Phys, 2018, 9(1):329-344. |