[1] Bauer A, Westkamper F, Grimme S, et al. Catalytic enantioselective reactions driven by photoinduced electron transfer[J]. Nature, 2005, 436(7054):1139-1140.
[2] Bixon M, Jortner J. Electron transfer:from isolated molecules to biomolecules[C]//Jortner J, Bixon M. Advances in Chemical Physics:Electron Transfer-from Isolated Molecules to Biomolecules, Pt 1. Hoboken:John Wiley & Sons Inc, 1999:pp. 35-202.
[3] Chen P Y, Meyer T J. Medium effects on charge transfer in metal complexes[J]. Chemical Reviews, 1998, 98(4):1439-1477.
[4] Cleland D M, Irwin G, Wagner P, et al. Linker conjugation effects in rhenium(I) bifunctional hole-transport/emitter molecules[J]. Chemistry-a European Journal, 2009, 15(15):3682-3690.
[5] Collin J P, Laine P, Launay J P, et al. Long-range coupling in a mixed-valence diruthenium complexes containing bis-terpyridine ligands of various lengths as bridges[J]. Journal of the Chemical Society-Chemical Communications, 1993,(5):434-435.
[6] Devault D. Quantum-mechanical tunnelling in biological-systems[J]. Quarterly Reviews of Biophysics, 1980, 13(4):387-564.
[7] Dolg M, Wedig U, Stoll H, et al. Abinitio pseudopotential study of the 1st row transition:metal monoxides and iron monohydride[J]. Journal of Chemical Physics, 1987, 86(4):2123-2131.
[8] Keita B, Nadjo L. Polyoxometalate-based homogeneous catalysis of electrode reactions:recent achievements[J]. Journal of Molecular Catalysis a-Chemical, 2007, 262(1-2):190-215.
[9] Marcus R A. On the theory of oxidation:reduction reactions involving electron transfer.1[J]. Journal of Chemical Physics, 1956, 24(5):966-978.
[10] Marcus R A. On theory of electron-transfer reactions.6. Unified treatment for homogeneous and electrode reactions[J]. Journal of Chemical Physics, 1965, 43(2):679-701.
[11] Marcus R A. theory of oxidation-reduction reactions involving electron transfer.4. A statistical-mechanical basis for treating contributions from solvent, ligands, and inert salt[J]. Discussions of the Faraday Society, 1960,29:21-31.
[12] Marcus R A, Sutin N. electron transfers in chemistry and biology[J]. Biochimica Et Biophysica Acta, 1985, 811(3):265-322.
[13] Ishida M, Hwang D, Zhang Z, et al. Beta-functionalized push-pull porphyrin sensitizers in dye-sensitized solar cells:effect of pi-conjugated spacers[J]. Chemsuschem, 2015, 8(17):2967-2977.
[14] Harihara.Pc, Pople J A. influence of polarization functions on molecular-orbital hydrogenation energies[J]. Theoretica Chimica Acta, 1973, 28(3):213-222.
[15] Hush N S. Adiabatic theory of outer sphere electron-transfer reactions in solution[J]. Transactions of the Faraday Society, 1961, 57(4):557-580.
[16] Hush N S, Reimers J R. Solvent effects on metal to ligand charge transfer excitations[J]. Coordination Chemistry Reviews, 1998, 177:37-60.
[17] Jang S J, Newton M D. Theory of torsional non-Condon electron transfer:a generalized spin-boson Hamiltonian and its nonadiabatic limit solution[J]. Journal of Chemical Physics, 2005, 122(2):024501.
[18] Blumberger J. Recent advances in the theory and molecular simulation of biological electron transfer reactions[J]. Chemical Reviews, 2015, 115(20):11191-11238.
[19] Hopfield J J. Electron-transfer between biological molecules by thermally activated tunneling[J]. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(9):3640-3644.
[20] Baweja L, Balamurugan K, Subramanian V, et al. Effect of graphene oxide on the conformational transitions of amyloid beta peptide:a molecular dynamics simulation study[J]. Journal of Molecular Graphics & Modelling, 2015, 61:175-185.
[21] Baweja L, Balamurugan K, Subramanian V, et al. Hydration patterns of graphene-based nanomaterials (gbnms) play a major role in the stability of a helical protein:a molecular dynamics simulation study[J]. Langmuir, 2013, 29(46):14230-14238.
[22] Bushnell G W, Louie G V, Brayer G D. High-resolution 3-dimensional structure of horse heart cytochrome-c[J]. Journal of Molecular Biology, 1990, 214(2):585-595.
[23] Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy[J]. RSC Advances, 2014, 4(8):3974-3983.
[24] Arakha M, Borah S M, Saleem M, et al. Interfacial assembly at silver nanoparticle enhances the antibacterial efficacy of nisin[J]. Free Radical Biology and Medicine, 2016, 101:434-445.
[25] Bellamy W, Takase M, Yamauchi K, et al. identification of the bactericidal domain of lactoferrin[J]. Biochimica Et Biophysica Acta, 1992, 1121(1/2):130-136.
[26] Costa C, Ronconi J V V, Daufenbach J F, et al. In vitro effects of silver nanoparticles on the mitochondrial respiratory chain[J]. Molecular and Cellular Biochemistry, 2010, 342(1/2):51-56.
[27] Foldbjerg R, Dang D A, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549[J]. Archives of Toxicology, 2011, 85(7):743-750.
[28] Autenrieth F, Tajkhorshid E, Baudry J, et al. Classical force field parameters for the heme prosthetic group of cytochrome c[J]. Journal of Computational Chemistry, 2004, 25(13):1613-1622.
[29] Staelens N, Leherte L, Champagne B, et al. Modeling of structural, energetic, and dynamic properties of few-atom silver clusters embedded in polynucleotide strands by using molecular dynamics[J]. Chemphyschem, 2015, 16(2):360-369.
[30] Balabin I A, Hu X Q, Beratan D N. Exploring biological electron transfer pathway dynamics with the Pathways Plugin for VMD[J]. Journal of Computational Chemistry, 2012, 33(8):906-910.
[31] Closs G L, Miller J R. Intramolecular long-distance electron:transfer in organic-molecules[J]. Science, 1988, 240(4851):440-447.
[32] Tong G S M, Kurnikov I V, Beratan D N. Tunneling energy effects on GC oxidation in DNA[J]. Journal of Physical Chemistry B, 2002, 106(9):2381-2392. |