[1] Kreindler D M, Lumsden C J. The effects of the irregular sample and missing data in time series analysis[J]. Nonlinear Dynamics Systems Analysis for the Behavioral Sciences Using Real Data. Boca Raton:CRC Press, 2016:149-172.Psychology & Life Sciences, 2006, 10(2):187-214. [2] Balouji E, Salor Ö, Ermis M. Exponential smoothing of multiple reference frame components with GPUs for real-time detection of time-varying harmonics and interharmonics of EAF currents[J]. IEEE Transactions on Industry Applications, 2018, 54(6):6566-6575. [3] Kozera R, Wilkołazka M. Natural spline interpolation and exponential parameterization for length estimation of curves[C]//AIP Conference Proceedings. Rhodes:AIP Publishing, 2017, 1863(1):400010. [4] Newsham G R, Birt B J. Building-level occupancy data to improve ARIMA-based electricity use forecasts[C]//Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building. Zurich:ACM, 2010:13-18. [5] Lippi M, Bertini M, Frasconi P. Short-term traffic flow forecasting:an experimental comparison of time-series analysis and supervised learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2):871-882. [6] Wang J, De Vries A P, Reinders M J T. Unifying user-based and item-based collaborative filtering approaches by similarity fusion[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Boston:ACM, 2006:501-508. [7] Yu H F, Rao N, Dhillon I. Temporal regularized matrix factorization for high-dimensional time series prediction[C]//Advances in Neural Information Processing Systems. Barcelona:NIPS, 2016:847-855. [8] Hron K, Templ M, Filzmoser P. Imputation of missing values for compositional data using classical and robust methods[J]. Computational Statistics & Data Analysis, 2010, 54(12):3095-3107. [9] Stekhoven D J, Bühlmann P. MissForest:non-parametric missing value imputation for mixed-type data[J]. Bioinformatics, 2012, 28(1):112-118. [10] Jia Z J, Song T W, Wang J X, et al. A time-series missing data completion method based on Fourier transform and kNNI algorithm[J]. Software Engineering, 2017, 20(3):9-13. [11] Miller D, Ward A, Bambos N, et al. Physiological waveform imputation of missing data using convolutional autoencoders[C]//2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom). Ostrawa:IEEE, 2018:1-6. [12] Wang H, Yuan Z L, Chen Y B, et al. An industrial missing values processing method based on generating model[J]. Computer Networks, 2019, 158:61-68. [13] Duan Y J, Lü Y S, Kang W W, et al. A deep learning based approach for traffic data imputation[C]//17th International IEEE Conference on Intelligent Transportation Systems (ITSC). Qingdao:IEEE, 2014:912-917. [14] Garnelo M, Schwarz J, Rosenbaum D, et al. Neural processes[J]. arXiv preprint arXiv:1807.01622, 2018. [15] Wentz F J, Gentemann C, Smith D, et al. Satellite measurements of sea surface temperature through clouds[J]. Science, 2000, 288(5467):847-850. [16] NOAA/Pacific Marine Environmental Laboratory. Tropical atmosphere ocean[DB/OL].[2019-06-06]. http://www.pmel.noaa.gov/tao/proj_over/proj_over.html. [17] Dua D, Graff C. UCI Machine learning repository[DB/OL].[2019-07-30]. https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data. [18] Zhang Z L, Rao B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5):912-926. [19] Strauman A S, Bianchi F M, Mikalsen K, et al. Classification of postoperative surgical site infections from blood measurements with missing data using recurrent neural networks[C]//2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). Las Vegas:IEEE, 2018:307-310. |