[1] Wood, R. W. A Study of Splashes[J]. Science, 1909, 29(742):464-465. [2] Thomson J J, Newall H F. V. On the formation of vortex rings by drops falling into liquids, and some allied phenomena[J]. Proceedings of the Royal Society of London, 1886, 39(239/241):417-436. [3] Aziz S D, Chandra S. Impact, recoil and splashing of molten metal droplets[J]. International Journal of Heat and Mass Transfer, 2000, 43(16):2841-2857. [4] van der Bos A, van der Meulen M J, Driessen T, et al. Velocity profile inside piezoacoustic inkjet droplets in flight:comparison between experiment and numerical simulation[J]. Physical Review Applied, 2014, 1(1):014004. [5] Gart S, Mates J E, Megaridis C M, et al. Droplet impacting a cantilever:a leaf-raindrop system[J]. Physical Review Applied, 2015, 3(4):044019. [6] Moreira A L N, Moita A S, Panão M R. Advances and challenges in explaining fuel spray impingement:How much of single droplet impact research is useful?[J]. Progress in Energy and Combustion Science, 2010, 36(5):554-580. [7] Clanet C, Béguin C, Richard D, et al. Maximal deformation of an impacting drop[J]. Journal of Fluid Mechanics, 2004, 517:199-208. [8] Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces[J]. Atomization and Sprays, 2001, 11(2):155-166. [9] Pan K L, Law C K. Dynamics of droplet-film collision[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada. Reston, Virigina:AIAA, 2005:352. [10] Agbaglah G, Thoraval M J, Thoroddsen S T, et al. Drop impact into a deep pool:vortex shedding and jet formation[J]. Journal of Fluid Mechanics, 2015, 764(R1):1-12. [11] Hao C, Li J, Liu Y, et al. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces[J]. Nature ComMunications, 2015, 6:7986. [12] Thoroddsen S T, Takehara K. The coalescence cascade of a drop[J]. Physics of Fluids, 2000, 12(6):1265-1267. [13] Blanchette F, Bigioni T P. Partial coalescence of drops at liquid interfaces[J]. Nature Physics, 2006, 2(4):254-257. [14] Rioboo R, Bauthier C, Conti J, et al. Experimental investigation of splash and crown formation during single drop impact on wetted surfaces[J]. Experiments in Fluids, 2003, 35(6):648-652. [15] Thoroddsen S T, Takehara K, Etoh T G. Micro-splashing by drop impacts[J]. Journal of Fluid Mechanics, 2012, 706:560-570. [16] Zhang L V, Brunet P, Eggers J, et al. Wavelength selection in the crown splash[J]. Physics of Fluids, 2010, 22(12):122105. [17] Eduardo C O, Ashkan D, Pretam K C, et al. Droplet impact on deep liquid pools:Rayleigh jet to formation of secondary droplets[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2015, 92(5):053022. [18] Cossali G E, Marengo M, Coghe A, et al. The role of time in single drop splash on thin film[J]. Experiments in Fluids, 2004, 36(6):888-900. [19] Berberović E, van Hinsberg N P, Jakirli Ac'1 S, et al. Drop impact onto a liquid layer of finite thickness:dynamics of the cavity evolution[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2009, 79(3):036306. [20] Oguz H N, Prosperetti A. Bubble entrainment by the impact of drops on liquid surfaces[J]. Journal of Fluid Mechanics, 1990, 219:143-179. [21] Morton D, Rudman M, Jong-Leng L. An investigation of the flow regimes resulting from splashing drops[J]. Physics of Fluids, 2000, 12(4):747-763. [22] Wang A B, Chen C C. Splashing impact of a single drop onto very thin liquid films[J]. Physics of Fluids, 2000, 12(9):2155-2158. [23] Asadi S, Passandideh-Fard M. A computational study on droplet impingement onto a thin liquid film[J]. Arabian Journal for Science and Engineering, 2009, 34(2B):505-517. [24] Pan K L, Cheng K R, Chou P C, et al. Collision dynamics of high-speed droplets upon layers of variable thickness[J]. Experiments in Fluids, 2008, 45(3):435-446. [25] Ray B, Biswas G, Sharma A. Regimes during liquid drop impact on a liquid pool[J]. Journal of Fluid Mechanics, 2015, 768:492-523. [26] Morley N B, Smolentsev S, Barleon L, et al. Liquid magnetohydrodynamics:recent progress and future directions for fusion[J]. Fusion Engineering and Design, 2000, 51/52:701-713. [27] Kaudze M Z, Lielausis O A. Droplet collision with liquid metal surface in the presence of a magnetic field[J]. Mag Gidrodin, 1984, 1:37. [28] Tagawa T. Numerical simulation of two-phase flows in the presence of a magnetic field[J]. Mathematics and Computers in Simulation, 2006, 72(2/6):212-219. [29] Tagawa T. Numerical simulation of liquid metal free-surface flows in the presence of a uniform static magnetic field[J]. ISIJ International, 2007, 47(4):574-581. [30] Yang J C, Qi T Y, Han T Y, et al. Elliptical spreading characteristics of a liquid metal droplet impact on a glass surface under a horizontal magnetic field[J]. Physics of Fluids, 2018, 30(1):012101. [31] Ren D W, Wu S, Yang J C, et al. Investigation of liquid metal drop impingement on a liquid metal surface under the influence of a horizontal magnetic field[J]. Physics of Fluids, 2020, 32(5):053311. [32] Xu Q, Oudalov N, Guo Q, et al. Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium[J]. Physics of Fluids, 2012, 24(6):063101. [33] Ray B, Biswas G, Sharma A. Bubble pinch-off and scaling during liquid drop impact on liquid pool[J]. Physics of Fluids, 2012, 24(8):082108. [34] Tropea C, Marengo M. The impact of drops on walls and films[J]. Multiphase Science and Technology, 1999, 11(1):19-36. |