[1] Han J W, Zhang D W, Cheng G, et al. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6):3325-3337. [2] Liu W, Yamazaki F, Vu T T. Automated vehicle extraction and speed determination from quickbird satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(1):75-82. [3] Manolakis D, Marden D, Shaw G A. Hyperspectral image processing for automatic target detection applications[J]. Lincoln Laboratory Journal, 2003, 14(1):79-116. [4] Manolakis D, Shaw G. Detection algorithms for hyperspectral imaging applications[J]. IEEE Signal Processing Magazine, 2002, 19(1):29-43. [5] Kraut S, Scharf L L, Butler R W. The adaptive coherence estimator:a uniformly most-powerful-invariant adaptive detection statistic[J]. IEEE Transactions on Signal Processing, 2005, 53(2):427-438. [6] Harsanyi J C. Detection and classification of subpixel spectral signatures in hyperspectral image sequences[D]. University of Maryland, Baltimore County, 1993. [7] Geng X R, Ji L Y, Sun K. Clever eye algorithm for target detection of remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:32-39. [8] Narumalani S, Mishra D R, Burkholder J, et al. A comparative evaluation of ISODATA and spectral angle mapping for the detection of saltcedar using airborne hyperspectral imagery[J]. Geocarto International, 2006, 21(2):59-66. [9] Du Q, Ren H, Chang C I. A comparative study for orthogonal subspace projection and constrained energy minimization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6):1525-1529. [10] Harsanyi J C, Chang C I. Hyperspectral image classification and dimensionality reduction:an orthogonal subspace projection approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4):779-785. [11] 高仕博, 程咏梅, 赵永强, 等. 基于多时相红外图像探测浅层地下目标[J]. 红外与毫米波学报, 2009, 28(1):25-30. [12] Xiao X M, Boles S, Liu J Y, et al. Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data[J]. Remote Sensing of Environment, 2002, 82(2/3):335-348. [13] Usman M, Liedl R, Shahid M A, et al. Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data[J]. Journal of Geographical Sciences, 2015, 25(12):1479-1506. [14] Xiao X M, Boles S, Liu J Y, et al. Mapping paddy rice agriculture in Southern China using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2005, 95(4):480-492. [15] Fichera C R, Mehmet G, Polino M. Land Cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics[J]. European Journal of Remote Sensing, 2012, 45(1):1-18. [16] Geng X R, Ji L Y, Zhao Y C. Filter tensor analysis:a tool for multi-temporal remote sensing target detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151:290-301. [17] Ren H, Du Q, Chang C I, et al. Comparison between constrained energy minimization based approaches for hyperspectral imagery[C]//IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, Greenbelt, MD, USA:IEEE Press, 2003:244-248. [18] 尹继豪, 王艳, 王义松. 一种改进的高光谱图像中多小目标检测算法[J]. 电子学报, 2010, 38(9):1975-1978. [19] 张贤达. 矩阵分析与应用[M].2版. 北京:清华大学出版社, 2013. [20] Youden W J. Index for rating diagnostic tests[J]. Cancer, 1950, 3(1):32-35. |