[1] Girshick R. Fast R-CNN[C]//IEEE International Conference on Computer Vision:Santiago, Chile:IEEE Press, 2015:1440-1448. [2] Ren S Q, He K M, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal Networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137-1149. [3] Redmon J, Divvala S, Girshick R, et al. You only look once:unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition:Las Vegas, USA:IEEE Press, 2016:779-788. [4] Liu W, Anguelov D, Erhan D, et al. SSD:single shot multibox detector[C]//European Conference on Computer Vision:Amsterdam, The Netherlands:Springer International Publishing, 2016:21-37. [5] Everingham M, Gool L V, Williams C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338. [6] Lin T Y, Maire M, Belongie S, et al. Microsoft COCO:common objects in context[C]//European Conference on Computer Vision:Zurich, Swiss:Springer International Publishing, 2014:740-755. [7] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition:Columbus, USA:IEEE Press, 2014:580-587. [8] Uijlings J, Sande K, Gevers T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171. [9] Zitnick C, Doll'ar P. Edge boxes:locating object proposals from edges[C]//European Conference on Computer Vision:Zurich, Swiss:Springer International Publishing, 2014:391-405. [10] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916. [11] Dai J F, Li Y, He K M, et al. R-FCN:object detection via region-based fully convolutional networks[C]//Neural Information Processing Systems:Barcelona, Spain:2016:379-387. [12] Redmon J, Farhadi A. YOLO9000:better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition:Honolulu, USA:IEEE Press, 2017:6517-6525. [13] 闫凯, 沈汀, 陈正超,等. 基于深度学习的SSD模型尾矿库自动提取[J]. 中国科学院大学学报, 2020, 37(3):360-367. [14] Lin T Y, Goyal P, Girshick R, et al. focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327. [15] Zhu C C, He Y H, Savvides M. Feature selective anchor-free module for single-shot object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition:Long Beach, USA:IEEE Press, 2019:840-849. [16] Tian Z, Shen C H, Chen H, et al. FCOS:fully convolutional one-stage object detection[C]//IEEE International Conference on Computer Vision:Seoul, Korea:IEEE Press, 2019:9627-9636. [17] Kong T, Sun F C, Liu H P, et al. FoveaBox:beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29:7389-7398. [18] Pang J M, Chen K, Shi J P, et al. Libra R-CNN:towards balanced learning for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition:Long Beach, USA:IEEE Press, 2019:821-830. [19] He Y H, Zhu C C, Wang J R, et al. Bounding box regression with uncertainty for accurate object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition:Long Beach, USA:IEEE Press, 2019:2888-2897. [20] Guo J Y, Han K, Wang Y H, et al. Hit-Detector:hierarchical trinity architecture search for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition:Seattle, USA:IEEE Press, 2020:11405-11414. [21] Srivastava N, Salakhutdinov R. Discriminative transfer learning with tree-based priors[C]//Neural Information Processing Systems:Harrahs and Harveys, Lake Tahoe, USA:2013:2094-2102. [22] Yan Z C, Zhang H, Piramuthu R, et al. HD-CNN:hierarchical deep convolutional neural networks for large scale visual recognition[C]//IEEE International Conference on Computer Vision. Santiago, Chile:IEEE Press, 2015:2740-2748. [23] Ristin M, Gall J, Guillaumin M, et al. From categories to subcategories:large-scale image classification with partial class label refinement[C]//The IEEE Conference on Computer Vision and Pattern Recognition:Boston, USA:IEEE Press, 2015:231-239. [24] Deng J, Ding N, Jia Y P, et al. Large-scale object classification using label relation graphs[C]//European Conference on Computer Vision:Zurich, Swiss:Springer International Publishing, 2014:48-64. [25] Ding N, Deng J, Murphy K, et al. Probabilistic label relation graphs with Ising models[C]//IEEE International Conference on Computer Vision:Santiago, Chile:IEEE Press, 2015:1161-1169. [26] Chen T S, Wu W X, Gao Y F, et al. Fine-Grained representation learning and recognition by exploiting hierarchical semantic embedding[C]//The 26th ACM International Conference on Multimedia. New York, USA:ACM Press, 2018:2023-2031. [27] Sfar A, Boujemaa N, Geman D. Confidence sets for fine-grained categorization and plant species identification[J]. International Journal of Computer Vision, 2015, 111(3):255-275. [28] Lee K, Lee K, Min K, et al. Hierarchical novelty detection for visual object recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA:IEEE Press, 2018:1034-1042. [29] Wu C X, Lenz I, Saxena A. Hierarchical semantic labeling for task-relevant RGB-D perception[C]//Robotics:Science and Systems:Berkeley, USA:2014:1-9. [30] Zhang H W, Zha Z J, Yang Y, et al. Attribute-Augmented semantic hierarchy[C]//ACM Transactions on Multimedia Computing, Communications and Applications, 2014, 11(1s):1-21. [31] Wang J, Yan F, Aker A, et al. A poodle or a dog? Evaluating automatic image annotation using human descriptions at different levels of granularity[C]//Third Workshop on Vision and Language:Dublin, Ireland:Dublin City University and the Association for Computational Linguistics, 2014:38-45. [32] Li A X, Luo T G, Lu Z W, et al. Large-Scale Few-Shot learning:knowledge transfer with class hierarchy[C]//IEEE Conference on Computer Vision and Pattern Recognition:Long Beach, USA:IEEE Press, 2019:7212-7220. [33] Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision,2015, 115(3):211-252. [34] Miller G A, Beckwith R, Fellbaum C, et al. Introduction to WordNet:an on-line lexical database[J]. International Journal of Lexicography, 1990, 3(4):235-244. [35] Wan W T, Zhong Y Y, Li T P, et al. Rethinking feature distribution for loss functions in image classification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA:IEEE Press, 2018:9117-9126. |