[1] Li Z Y, Ding L, Song P P, et al. Paleomagnetic constraints on the paleolatitude of the Lhasa block during the Early Cretaceous:implications for the onset of India-Asia collision and latitudinal shortening estimates across Tibet and stable Asia[J]. Gondwana Research, 2017, 41:352-372. [2] Royden L H, Burchfiel B C, King R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276(5313):788-790. [3] Royden L H, Burchfiel B C, van der Hilst R D. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5892):1054-1058. [4] Molnar P H, Tapponnier P. Cenozoic tectonics of Asia:effects of a continental collision[J]. Nature, 1975, 189(4201):419-426. [5] England P, Houseman G. Finite strain calculations of continental deformation:2. Comparison with the India-Asia collision zone[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B3):3664-3676. [6] Chen L, Capitanio F A, Liu L J, et al. Crustal rheology controls on the Tibetan Plateau formation during India-Asia convergence[J]. Nature Communications, 2017, 8:15992. [7] Forsyth D, Uyeda S. On the relative importance of the driving forces of plate motion[J]. Geophysical Journal of the Royal Astronomical Society, 1975, 43(1):163-200. [8] Cloos M. Lithospheric buoyancy and collisional orogenesis:Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts[J]. Geological Society of America Bulletin, 1993, 105(6):715. [9] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280. [10] Jolivet L, Faccenna C, Becker T, et al. Mantle flow and deforming continents:from India-Asia convergence to Pacific subduction[J]. Tectonics, 2018, 37(9):2887-2914. [11] Zou Y, Tian X B, Yu Y Q, et al. Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet[J]. Earth and Planetary Physics, 2019, 3(1):62-68. [12] Liu M, Cui X J, Liu F T. Cenozoic rifting and volcanism in Eastern China:a mantle dynamic link to the Indo-Asian collision?[J]. Tectonophysics, 2004, 393(1-4):29-42. [13] 祝爱玉, 张东宁, 朱涛, 等. 地幔对流拖曳力影响青藏高原东北缘地壳运动格局的数值模拟研究[J]. 中国科学:地球科学, 2019, 49(2):353-367. [14] Kronbichler M, Heister T, Bangerth W. High accuracy mantle convection simulation through modern numerical methods[J]. Geophysical Journal International, 2012, 191(1):12-29. [15] Donea J, Huerta A. Finite element methods for flow problems[M]. England:Wiley, 2003. [16] Brezzi F, Fortin M. Mixed and hybrid finite element methods[M]. New York:Springer-Verlag, 1991. [17] Iserles A. A first course in the numerical analysis of differential equations[M]. 2nd ed. Cambridge:Cambridge University Press, 2008. [18] Anderson J D, Wendt J. Computational fluid dynamics[M]. New York:McGraw-Hill, 1995. [19] Fu R S, Huang J H, Dong S Q, et al. New mantle convection models constrained by seismic tomography data[J]. Chinese Journal of Geophysics, 2003, 46(6):1106-1113. [20] Bunge H P, Hagelberg C R, Travis B J. Mantle circulation models with variational data assimilation:Inferring past mantle flow and structure from plate motion histories and seismic tomography[J]. Geophysical Journal International, 2003, 152(2):280-301. [21] Wang W Y, Becker T W. Upper mantle seismic anisotropy as a constraint for mantle flow and continental dynamics of the North American plate[J]. Earth and Planetary Science Letters, 2019, 514:143-155. [22] 朱涛. 欧亚板块运动对中国大陆岩石圈底部地幔对流速度场和水平剪切应力场的影响[J]. 地学前缘, 2017, 24(5):192-206. [23] Becker T W, Faccenna C. Mantle conveyor beneath the Tethyan collisional belt[J]. Earth and Planetary Science Letters, 2011, 310(3/4):453-461. [24] Ritsema J, van Heijst H J, Woodhouse J H. Complex shear wave velocity structure imaged beneath Africa and Iceland[J]. Science, 1999, 286(5446):1925-1928. [25] Steinberger B. Plumes in a convecting mantle:models and observations for individual hotspots[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B5):11127-11152. [26] Karato S I. Importance of anelasticity in the interpretation of seismic tomography[J]. Geophysical Research Letters, 1993, 20(15):1623-1626. [27] Forte A M, Mitrovica J X. Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data[J]. Nature, 2001, 410(6832):1049-1056. [28] Forte A M, Moucha R, Simmons N A, et al. Deep-mantle contributions to the surface dynamics of the North American continent[J]. Tectonophysics, 2010, 481(1-4):3-15. [29] Conrad C P, Gurnis M. Seismic tomography, surface uplift, and the breakup of Gondwanaland:integrating mantle convection backwards in time[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3):1031. [30] Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113(3/4):212-270. [31] Boyden J A, Müller R D, Gurnis M, et al. Next-generation plate-tectonic reconstructions using GPlates[M]//Keller G R, Baru C. Geoinformatics:Cyberinfrastructure for the solid earth sciences. Cambridge:Cambridge University Press, 2011:95-114. [32] McConnell R K Jr. Viscosity of the mantle from relaxation time spectra of isostatic adjustment[J]. Journal of Geophysical Research, 1968, 73(22):7089-7105. [33] Zhang Y J, Sekine T, Lin J F, et al. Shock compression and melting of an Fe-Ni-Si alloy:implications for the temperature profile of the earth's core and the heat flux across the core-mantle boundary[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(2):1314-1327. [34] Katsura T, Yoneda A, Yamazaki D, et al. Adiabatic temperature profile in the mantle[J]. Physics of the Earth and Planetary Interiors, 2010, 183(1/2):212-218. [35] Huangfu P P, Li Z H, Gerya T, et al. Multi-terrane structure controls the contrasting lithospheric evolution beneath the western and central-eastern Tibetan Plateau[J]. Nature Communications, 2018, 9(1):3780. [36] Liang X F, Chen Y, Tian X B, et al. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography[J]. Earth and Planetary Science Letters, 2016, 443:162-175. [37] Wu C L, Tian X B, Xu T, et al. Deformation of crust and upper mantle in central Tibet caused by the northward subduction and slab tearing of the Indian lithosphere:new evidence based on shear wave splitting measurements[J]. Earth and Planetary Science Letters, 2019, 514:75-83. [38] Chen Y, Li W, Yuan X H, et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters, 2015, 413:13-24. [39] Kustowski B, Ekström G, Dziewoński A M. Anisotropic shear-wave velocity structure of the Earth's mantle:a global model[J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B6):B06306. [40] Panning M, Romanowicz B. A three-dimensional radially anisotropic model of shear velocity in the whole mantle[J]. Geophysical Journal International, 2006, 167(1):361-379. [41] Simmons N A, Forte A M, Grand S P. Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity:implications for the relative importance of thermal versus compositional heterogeneity[J]. Geophy-sical Journal International, 2009, 177(3):1284-1304. [42] Houser C, Masters G, Shearer P, et al. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms[J]. Geophysical Journal International, 2008, 174(1):195-212. |