[1] Bahl P, Padmanabhan V N. RADAR:an in-building RF-based user location and tracking system[C]//Proceedings IEEE INFOCOM 2000. Conference on Computer Com-munications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064). March 26-30, 2000, Tel Aviv, Israel. IEEE, 2000:775-784. [2] Roos T, Myllymäki P, Tirri H, et al. A probabilistic appr-oach to WLAN user location estimation[J]. International Journal of Wireless Information Networks, 2002, 9(3):155-164. [3] 杨如民, 陈敏, 余成波. 基于贝叶斯概率优化的Wi-Fi室内定位算法[J]. 计算机应用与软件, 2021, 38(2):97-102,144. [4] Brunato M, Battiti R. Statistical learning theory for location fingerprinting in wireless LANs[J]. Computer Networks, 2005, 47(6):825-845. [5] 李梦梦. 基于机器学习的WIFI室内定位技术研究[D].西安:西安科技大学, 2020. [6] Wang X Y, Gao L J, Mao S W, et al. DeepFi:deep learning for indoor fingerprinting using channel state information[C]//2015 IEEE Wireless Communications and Networking Con-ference(WCNC). March 9-12, 2015, New Orleans, LA, USA. IEEE, 2015:1666-1671. [7] 王玉环. 基于深度学习的RSSI室内指纹定位研究[D].北京:北京交通大学, 2020. [8] 俞敬. 基于卷积神经网络的新型CSI室内定位方法研究[D]. 天津:天津工业大学, 2019. [9] Wang B, Chen Q Y, Yang L T, et al. Indoor smartphone localization via fingerprint crowdsourcing:challenges and app-roaches[J]. IEEE Wireless Communications, 2016, 23(3):82-89. [10] 季玉凤. 基于众包的室内Wi-Fi指纹地图构建方法[D].江苏镇江:江苏大学, 2020. [11] 章裕润,吴飞,毛万葵. 基于移动众包的地磁传感器阵列室内指纹定位技术[J]. 传感器与微系统, 2019, 38(12):36-39. [12] Kim Y, Chon Y, Cha H.Smartphone-based collaborative and autonomous radio fingerprinting[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C(Applications and Reviews), 2012, 42(1):112-122. [13] 邓英. 基于多传感器信息融合的室内定位方法研究[D]. 重庆:重庆理工大学,2020. [14] 汪振,陆奎.基于粒子滤波融合Wi-Fi和PDR的室内定位研究[J]. 电脑知识与技术, 2020, 16(9):39,42. [15] 宋世铭,王继,韩李涛.一种基于改进粒子滤波算法的室内融合定位方法[J]. 导航定位学报, 2020, 8(1):99-106. [16] 刘勋. 基于多维信息融合的位置指纹室内定位算法研究[D]. 河北秦皇岛:燕山大学, 2020. [17] 韩冷,戴鹏,阳媛,等.多源信息融合的室内定位方法[J].传感器与微系统, 2020, 39(7):21-24. [18] 段林甫. 多源异构融合定位方法研究[D]. 成都:电子科技大学, 2018. [19] 赵万龙. 多源融合定位理论与方法研究[D]. 哈尔滨:哈尔滨工业大学,2018. [20] Zheng V W, Xiang E W, Yang Q, et al. Transferring locali-zation models over time[C]//Proceedings of the Twenty-Third National Conference on Artificial Intelligence, Chicago, Illinois, AAAI, 2008, 3:1421-1426. [21] Sorour S, Lostanlen Y, Valaee S, et al. Joint indoor locali-zation and radio map construction with limited deployment load[J]. IEEE Transactions on Mobile Comupting, 2015, 14(5):1031-1043. [22] Pan S J, Tsang I W, Kwok J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2):199-210. [23] Long M S, Wang J M, Ding G G, et al. Transfer feature learning with joint distribution adaptation[C]//2013 IEEE International Conference on Computer Vision. December 1-8, 2013, Sydney, NSW, Australia. IEEE, 2013:2200-2207. [24] Wang J D, Chen Y Q, Hao S J, et al. Balanced distribution adaptation for transfer learning[C]//2017 IEEE International Conference on Data Mining(ICDM). November 18-21, 2017, New Orleans, LA, USA. IEEE, 2017:1129-1134. [25] Gopalan R, Li R N, Chellappa R. Domain adaptation for object recognition:an unsupervised approach[C]//2011 Inte-rnational Conference on Computer Vision. November 6-13, 2011, Barcelona, Spain. IEEE, 2011:999-1006. [26] Gong B Q, Shi Y, Sha F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. June 16-21, 2012, Providence, RI, USA. IEEE, 2012:2066-2073. [27] Ramdas A, Trillos N G, Cuturi M. On Wasserstein two-sample testing and related families of nonparametric tests[J]. Entropy, 2017, 19(2):47. [28] Popleteev A. Indoor positioning using ambient radio signals:data acquisition platform for a long-term study[C]//2016 13th Workshop on Positioning, Navigation and Communications(WPNC). October 19-20, 2016, Bremen, Germany. IEEE, 2016:1-5. |