[1] Bai Z D, Hewa S. Effect of high dimension:by an example of a two sample problem[J]. Statistica Sinica, 1996, 6(2):311-329. [2] Chen S X, Qin Y L. A two sample test for high dimensional data with applications to gene-set testing[J]. Annals of Statistics, 2010, 38(2):808-835.DOI:10.1214/09-aos716. [3] Srivastava M S, Meng D. A test for the mean vector with fewer observations than the dimension[J]. Journal of Multivariate Analysis, 2008, 99(3):386-402.DOI:10.1016/j.jmva.2006.11.002. [4] Srivastava M S. A test for the mean vector with fewer observations than the dimension under non-normality[J]. Journal of Multivariate Analysis, 2009, 100(3):518-532.DOI:10.1016/j.jmva.2008.06.006. [5] Srivastava M S, Shota K, Yutaka K. A two sample test in high dimensional data[J]. Journal of Multivariate Analysis, 2013, 114:349-358.DOI:10.1016/j.jmva.2012.08.014. [6] Park J Y, Deepak N A. A test for the mean vector in large dimension and small samples[J]. Journal of Statistical Planning and Inference, 2013, 143(5):929-943.DOI:10.1016/j.jspi.2012.11.001. [7] Wang L, Peng B, Li R Z. A high-dimensional nonparametric multivariate test for mean vector[J]. Journal of the American Statistical Association, 2015, 110(512):1658-1669.DOI:10.1080/01621459.2014.988215. [8] Feng L, Zou C L, Wang Z J. Multivariate-sign-based high-dimensional tests for the two-sample location problem[J]. Journal of the American Statistical Association, 2016, 111(514):721-735.DOI:10.1080/01621459.2015.1035380. |