[1] Hairer E, Lubich C, Wanner G. Geometric numerical integration: structure-preserving algorithms for ordinary differential equations[M]. 2nd ed. Berlin: Springer Berlin Heidelberg, 2002: 256-257. [2] Plank M. Hamiltonian structures for the n-dimensional Lotka-Volterra equations[J]. Journal of Mathematical Physics, 1995, 36(7): 3520-3534.DOI:10.1063/1.530978. [3] Arnold L, Horsthemke W, Stucki J W. The influence of external real and white noise on the Lotka-Volterra model[J]. Biometrical Journal, 1979, 21(5): 451-471.DOI:10.1002/bimj.4710210507. [4] Mao X R, Marion G, Renshaw E. Environmental Brownian noise suppresses explosions in population dynamics[J]. Stochastic Processes and Their Applications, 2002, 97(1): 95-110.DOI:10.1016/S0304-4149(01)00126-0. [5] Mao X R, Sabanis S, Renshaw E. Asymptotic behavior of the stochastic Lotka-Volterra model[J]. Journal of Mathematical Analysis and Applications, 2003, 287(1): 141-156.DOI:10.1016/S0022-247X(03)00539-0. [6] Rudnicki R, Pichór K. Influence of stochastic perturbation on prey-predator systems[J]. Mathematical Biosciences, 2007, 206(1): 108-119.DOI:10.1016/j.mbs.2006.03.006 [7] Khasminskii R Z, Klebaner F C. Long term behavior of solutions of the Lotka-Volterra system under small random perturbations[J]. The Annals of Applied Probability, 2001, 11(3): 952-963.DOI:10.1214/aoap/1015345354. [8] Cohen D, Dujardin G. Energy-preserving integrators for stochastic Poisson systems[J]. Communications in Mathematical Sciences, 2014, 12(8): 1523-1539.DOI:10.4310/cms.2014.v12.n8.a7. [9] Hong J L, Ruan J L, Sun L Y, et al. Structure-preserving numerical methods for stochastic Poisson systems[J]. Communications in Computational Physics, 2021, 29(3):802-830.DOI:10.4208/cicp.oa-2019-0084. [10] Li X Y, Ma Q, Ding X H. High-order energy-preserving methods for stochastic Poisson systems[J]. East Asian Journal on Applied Mathematics, 2019, 9(3): 465-484.DOI:10.4208/eajam.290518.310718. [11] Wang P J, Wang L J. Stochastic Poisson integrators based on Padé approximations for linear stochastic Poisson systems[J]. Journal of University of Chinese Academy of Sciences, 2021,38(2):160-170.DOI:10.7523/j.issn.2095-6134.2021.02.002. [12] Arnold L. Stochastic differential equations: theory and applications[M]. New York: Wiley, 1974: 112-113. [13] Mao X R. Stochastic differential equations and applications[M]. 2nd ed. Cambridge: Woodhead Publishing, 2007: 56-58. |