[1] Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks[J]. IEEE Communications Magazine, 2014, 52(2): 122-130.DOI:10.1109/MCOM.2014.6736752. [2] Li R Z, Hong P L, Xue K P, et al. Energy-efficient resource allocation for high-rate underlay D2D communications with statistical CSI: a one-to-many strategy[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4006-4018.DOI:10.1109/TVT.2020.2973228. [3] Sawyer N, Smith D B. Flexible resource allocation in device-to-device communications using stackelberg game theory[J]. IEEE Transactions on Communications, 2019, 67(1): 653-667.DOI:10.1109/TCOMM.2018.2873344. [4] 李维谦, 邱玲. 支持D2D多播的蜂窝网络分簇策略与资源分配[J]. 中国科学院大学学报, 2019, 36(1): 137-143.DOI:10.7523/j.issn.2095-6134.2019.01.019. [5] Luo Y, Hong P L, Su R L, et al. Resource allocation for energy harvesting-powered D2D communication underlaying cellular networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(11): 10486-10498.DOI:10.1109/TVT.2017.2727144. [6] Sakr A H, Hossain E. Cognitive and energy harvesting-based D2D communication in cellular networks: stochastic geometry modeling and analysis[J]. IEEE Transactions on Communications, 2015, 63(5): 1867-1880.DOI:10.1109/TCOMM.2015.2411266. [7] Liu Y W, Wang L F, Raza Zaidi S A, et al. Secure D2D communication in large-scale cognitive cellular networks: a wireless power transfer model[J]. IEEE Transactions on Communications, 2016, 64(1): 329-342.DOI:10.1109/TCOMM.2015.2498171. [8] Ponnimbaduge Perera T D, Jayakody D N K, Sharma S K, et al. Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 264-302.DOI:10.1109/COMST.2017.2783901. [9] Lu X, Wang P, Niyato D, et al. Wireless networks with RF energy harvesting: a contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 757-789.DOI:10.1109/COMST.2014.2368999. [10] Lim D W, Kang J, Kim H M. Adaptive power control for D2D communications in downlink SWIPT networks with partial CSI[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1333-1336.DOI:10.1109/LWC.2019.2916352. [11] Lim D W, Kang J, Chun C J, et al. Joint transmit power and time-switching control for device-to-device communications in SWIPT cellular networks[J]. IEEE Communications Letters, 2019, 23(2): 322-325.DOI:10.1109/LCOMM.2018.2883432. [12] Huang J, Xing C C, Guizani M. Power allocation for D2D communications with SWIPT[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2308-2320.DOI:10.1109/TWC.2019.2963833. [13] Huang J, Cui J J, Xing C C, et al. Energy-efficient SWIPT-empowered D2D mode selection[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3903-3915.DOI:10.1109/TVT.2020.2970235. [14] Zhou Z Y, Gao C X, Xu C, et al. Energy-efficient stable matching for resource allocation in energy harvesting-based device-to-device communications[J]. IEEE Access, 2017, 5: 15184-15196.DOI:10.1109/ACCESS.2017.2678508. [15] Palomar D P, Chiang M. A tutorial on decomposition methods for network utility maximization[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 1439-1451.DOI:10.1109/JSAC.2006.879350. [16] Fletcher R, Leyffer S. Solving mixed integer nonlinear programs by outer approximation[J]. Mathematical Programming, 1994, 66(1): 327-349.DOI:10.1007/BF01581153. [17] Papandriopoulos J, Evans J S. SCALE: a low-complexity distributed protocol for spectrum balancing in multiuser DSL networks[J]. IEEE Transactions on Information Theory, 2009, 55(8): 3711-3724.DOI:10.1109/TIT.2009.2023751. [18] Ng D W K, Lo E S, Schober R. Wireless information and power transfer: energy efficiency optimization in OFDMA systems[J]. IEEE Transactions on Wireless Communications, 2013, 12(12): 6352-6370.DOI:10.1109/TWC.2013.103113.130470. [19] Mach P, Becvar Z, Najla M. Resource allocation for D2D communication with multiple D2D pairs reusing multiple channels[J]. IEEE Wireless Communications Letters, 2019, 8(4): 1008-1011.DOI:10.1109/LWC.2019.2903798. |