[1] Wehner M, Arnold J, Knutson T, et al. Chapter 8:droughts, floods, and wildfire. Climate science special report:Fourth national climate assessment (NCA4), Volume I[R]. U.S. Global Change Research Program, 2017.DOI:10.7930/JOCJ8BNN. [2] Ngoc Thach N, Bao-Toan Ngo D, Xuan-Canh P, et al. Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms:a comparative study[J]. Ecological Informatics, 2018, 46:74-85.DOI:10.1016/j.ecoinf.2018.05.009. [3] Pettinari M L, Chuvieco E. Fire behavior simulation from global fuel and climatic information[J]. Forests, 2017, 8(6):179.DOI:10.3390/f8060179. [4] Finney M A. FARSITE:fire Area Simulator-model development and evaluation[R]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 1998. [5] Tymstra C, Bryce R, Wotton B, et al. Development and structure of Prometheus:the Canadian wildland fire growth simulation model[R/OL]. (2013-04-03)[2021-04-06]. http://publications.gc.ca/pub?id=9.619969&sl=1. [6] Wotton B M, Martell D L, Logan K A. Climate change and people-caused forest fire occurrence in Ontario[J]. Climatic Change, 2003, 60(3):275-295.DOI:10.1023/A:1026075919710. [7] Koutsias N, Martínez-Fernández J, Allgöwer B. Do factors causing wildfires vary in space? evidence from geographically weighted regression[J]. GIScience & Remote Sensing, 2010, 47(2):221-240.DOI:10.2747/1548-1603.47.2.221. [8] Conedera M, Torriani D, Neff C, et al. Using Monte Carlo simulations to estimate relative fire ignition danger in a low-to-medium fire-prone region[J]. Forest Ecology and Management, 2011, 261(12):2179-2187.DOI:10.1016/j.foreco.2010.08.013. [9] Lautenberger C. Wildland fire modeling with an Eulerian level set method and automated calibration[J]. Fire Safety Journal, 2013, 62:289-298.DOI:10.1016/j.firesaf.2013.08.014. [10] Bisquert M, Caselles E, Sánchez J M, et al. Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data[J]. International Journal of Wildland Fire, 2012, 21(8):1025-1029.DOI:10.1071/wf11105. [11] Satir O, Berberoglu S, Donmez C. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem[J]. Geomatics, Natural Hazards and Risk, 2016, 7(5):1645-1658.DOI:10.1080/19475705.2015.1084541. [12] Ghorbanzadeh O, Blaschke T, Gholamnia K, et al. Forest fire susceptibility and risk mapping using social/infrastructural vulnerability and environmental variables[J]. Fire, 2019, 2(3):50.DOI:10.3390/fire2030050. [13] Pourghasemi H R, Gayen A, Lasaponara R, et al. Application of learning vector quantization and different machine learning techniques to assessing forest fire influence factors and spatial modelling[J]. Environmental Research, 2020, 184:109321.DOI:10.1016/j.envres.2020.109321. [14] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444.DOI:10.1038/nature14539. [15] Zhang G L, Wang M, Liu K. Forest fire susceptibility modeling using a convolutional neural network for Yunnan Province of China[J]. International Journal of Disaster Risk Science, 2019, 10(3):386-403.DOI:10.1007/s13753-019-00233-1. [16] Hodges J L, Lattimer B Y. Wildland fire spread modeling using convolutional neural networks[J]. Fire Technology, 2019, 55(6):2115-2142.DOI:10.1007/s10694-019-00846-4. [17] Zhang C, Pan X, Li H P, et al. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 140:133-144.DOI:10.1016/j.isprsjprs.2017.07.014. [18] Liu T, Abd-Elrahman A. Deep convolutional neural network training enrichment using multi-view object-based analysis of Unmanned Aerial systems imagery for wetlands classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139:154-170.DOI:10.1016/j.isprsjprs.2018.03.006. [19] Wang Y, Fang Z C, Hong H Y. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China[J]. Science of the Total Environment, 2019, 666:975-993.DOI:10.1016/j.scitotenv.2019.02.263. [20] Landfire. Forest canopy cover layer, forest canopy height layer, etc[EB/OL]. US Department of the Interior, Geological Survey, (2019)[2020-06-23]. http://landfire.cr.usgs.gov/viewer/. [21] Bengio Y, Courville A, Vincent P. Representation learning:a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828.DOI:10.1109/TPAMI.2013.50. [22] Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359.DOI:10.1109/TKDE.2009.191. [23] Kolesnikov A, Zhai X H, Beyer L. Revisiting self-supervised visual representation learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2020:1920-1929.DOI:10.1109/CVPR.2019.00202. [24] Donahue J, Krähenbühl P, Darrell T. Adversarial feature learning[EB/OL]. arXiv:1605.09782. (2017-04-03)[2021-04-06]. https://arxiv.org/abs/1605.09782. [25] Le Q V. Building high-level features using large scale unsupervised learning[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. May 26-31, 2013, Vancouver, BC, Canada. IEEE, 2013:8595-8598.DOI:10.1109/ICASSP.2013.6639343. [26] Lee H, Grosse R, Ranganath R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[C]//Proceedings of the 26th Annual International Conference on Machine Learning-ICML'09. June 14-18, 2009, Montreal, Quebec, Canada. New York:ACM Press, 2009:609-616.DOI:10.1145/1553374.1553453. [27] Kingma D P, Welling M. Auto-encoding variational bayes[EB/OL]. arXiv:1312.6114. (2014-05-01)[2021-04-06]. https://arxiv.org/abs/1312.6114. [28] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[EB/OL]. arXiv:1406.2661. (2014-06-10)[2021-04-06]. https://arxiv.org/abs/1406.2661. [29] Doersch C, Gupta A, Efros A A. Unsupervised visual representation learning by context prediction[C]//2015 IEEE International Conference on Computer Vision (ICCV). December 7-13, 2015, Santiago, Chile. IEEE, 2016:1422-1430.DOI:10.1109/ICCV.2015.167. [30] Noroozi M, Favaro P. Unsupervised learning of visual representations by solving jigsaw puzzles[M]//Computer Vision-ECCV 2016. Cham:Springer International Publishing,2016:69-84. DOI:10.1007/978-3-319-46466-4_5. [31] Larsson G, Maire M, Shakhnarovich G. Learning representations for automatic colorization[M]//Computer Vision-ECCV 2016. Cham:Springer International Publishing,2016:577-593. DOI:10.1007/978-3-319-46493-0_35. [32] Pathak D, Krähenbühl P, Donahue J, et al. Context encoders:feature learning by inpainting[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:2536-2544.DOI:10.1109/CVPR.2016.278. [33] Zhang R, Isola P, Efros A A. Split-brain autoencoders:Unsupervised learning by cross-channel prediction[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:645-654.DOI:10.1109/CVPR.2017.76. [34] Noroozi M, Pirsiavash H, Favaro P. Representation learning by learning to count[C]//2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017:5899-5907.DOI:10.1109/ICCV.2017.628. [35] Gidaris S, Singh P, Komodakis N. Unsupervised representation learning by predicting image rotations[EB/OL]. arXiv:1803.07728. (2018-03-21)[2021-04-06]. https://arxiv.org/abs/1803.07728. [36] Chen X, Fan H, Girshick R, et al. Improved baselines with momentum contrastive learning[EB/OL]. arXiv:2003.04297. (2020-03-09)[2021-04-06]. https://arxiv.org/abs/2003.04297. [37] Gillies S, Ward B, Petersen A, et al. Rasterio:geospatial raster I/O for Python programmers[EB/OL]. (2013)[2020-06-21] https://github. com/mapbox/rasterio. [38] Scott J H, Burgan R E. Standard fire behavior fuel models:a comprehensive set for use with Rothermel's surface fire spread model[R]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2005. [39] Zhan X H, Xie J H, Liu Z W, et al. Online deep clustering for unsupervised representation learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020:6687-6696.DOI:10.1109/CVPR42600.2020.00672. [40] He K M, Fan H Q, Wu Y X, et al. Momentum contrast for unsupervised visual representation learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020:9726-9735.DOI:10.1109/CVPR42600.2020.00975. [41] Oord A Van Den, Li Y, Vinyals O. Representation learning with contrastive predictive coding[EB/OL]. arXiv:1807.03748. (2019-01-22)[2021-04-06]. https://arxiv.org/abs/1807.03748. [42] Janocha K, Czarnecki W M. On loss functions for deep neural networks in classification[EB/OL]. arXiv:1702.05659. (2017-02-18)[2021-04-06]. https://arxiv.org/abs/1702.05659. [43] Pan H Y, Han H, Shan S G, et al. Mean-variance loss for deep age estimation from a face[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018:5285-5294.DOI:10.1109/CVPR.2018.00554. [44] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:770-778.DOI:10.1109/CVPR.2016.90. |