[1] Tam G K L, Cheng Z Q, Lai Y K, et al. Registration of 3D point clouds and meshes:a survey from rigid to nonrigid[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(7):1199-1217. [2] Maiseli B, Gu Y F, Gao H J. Recent developments and trends in point set registration methods[J]. Journal of Visual Communication and Image Representation, 2017, 46:95-106. [3] Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256. [4] Chen Y, Medioni G. Object modelling by registration of multiple range images[J]. Image and Vision Computing, 1992, 10(3):145-155. [5] Rueckert D, Sonoda L I, Hayes C, et al. Nonrigid registration using free-form deformations:application to breast MR images[J]. IEEE Transactions on Medical Imaging, 1999, 18(8):712-721. [6] Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C]//Proceedings Third International Conference on 3-D Digital Imaging and Modeling. May 28-June 1, 2001, Quebec City, QC, Canada. IEEE, 2001:145-152. [7] Li H, Sumner R W, Pauly M. Global correspondence optimization for non-rigid registration of depth scans[J]. Computer Graphics Forum, 2008, 27(5):1421-1430. [8] Bouaziz S, Tagliasacchi A, Pauly M. Sparse iterative closest point[J]. Computer Graphics Forum, 2013, 32(5):113-123. [9] 王飞鹏, 肖俊, 王颖, 等. 一种基于高斯曲率的ICP改进算法[J]. 中国科学院大学学报, 2019, 36(5):702-708. [10] Xiao J H, Adler B, Zhang H X. 3D point cloud registration based on planar surfaces[C]//2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). September 13-15, 2012, Hamburg, Germany. IEEE, 2012:40-45. [11] Xu Y, Boerner R, Yao W, et al. Automated coarse registration of point clouds in 3d urban scenes using voxel based plane constraint[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-2/W4:185-191. [12] Chen S L, Nan L L, Xia R B, et al. PLADE:a plane-based descriptor for point cloud registration with small overlap[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4):2530-2540. [13] Zhong Y. Intrinsic shape signatures:a shape descriptor for 3D object recognition[C]//2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops. September 27-October 4, 2009, Kyoto, Japan. IEEE, 2009:689-696. [14] Sipiran I, Bustos B. Harris 3D:a robust extension of the Harris operator for interest point detection on 3D meshes[J]. The Visual Computer, 2011, 27(11):963-976. [15] Guo Y L, Bennamoun M, Sohel F, et al. A comprehensive performance evaluation of 3D local feature descriptors[J]. International Journal of Computer Vision, 2016, 116(1):66-89. [16] Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation. May 12-17, 2009, Kobe, Japan. IEEE, 2009:3212-3217. [17] Tombari F, Salti S, Stefano L. Unique signatures of histograms for local surface description[C]//Computer Vision-ECCV 2010, 2010:356-369. DOI:10.1007/978-3-642-15558-1_26. [18] Zhou Q Y, Park J, Koltun V. Fast global registration[M]//Computer Vision-ECCV 2016. Cham:Springer International Publishing, 2016:766-782. [19] Wolfson H J, Rigoutsos I. Geometric hashing:an overview[J]. IEEE Computational Science and Engineering, 1997, 4(4):10-21. [20] Fischler M A, Bolles R C. Random sample consensus[J]. Communications of the ACM, 1981, 24(6):381-395. [21] Chen C S, Hung Y P, Cheng J B. RANSAC-based DARCES:A new approach to fast automatic registration of partially overlapping range images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(11):1229-1234. [22] Aiger D, Mitra N J, Cohen-Or D. 4-points congruent sets for robust pairwise surface registration[C]//ACM SIGGRAPH 2008 papers on-SIGGRAPH'08. August 11-15, 2008. Los Angeles, California. New York:ACM Press, 2008:1-10. [23] Mellado N, Aiger D, Mitra N J. Super 4PCS fast global pointcloud registration via smart indexing[J]. Computer Graphics Forum, 2014, 33(5):205-215. [24] Habib A, Ghanma M, Morgan M, et al. Photogrammetric and lidar data registration using linear features[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(6):699-707. [25] Al-Durgham M, Habib A. A procedure for the registration and segmentation of heterogeneous lidar data[C]//2012 International Conference on Computer Vision in Remote Sensing. December 16-18, 2012, Xiamen, China. IEEE, 2012:122-126. [26] Yang B S, Zang Y F. Automated registration of dense terrestrial laser-scanning point clouds using curves[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 95:109-121. [27] Xu Y S, Boerner R, Yao W, et al. Pairwise coarse registration of point clouds in urban scenes using voxel-based 4-planes congruent sets[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151:106-123. [28] Hattab A, Taubin G. 3D rigid registration of cad point-clouds[C]//2018 International Conference on Computing Sciences and Engineering (ICCSE). March 11-13, 2018, Kuwait, Kuwait. IEEE, 2018:1-6. [29] Charles R Q, Hao S, Mo K C, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:77-85. [30] Qi C R, Yi L, Su H, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[EB/OL]. arXiv:1706.02413. (2017-06-07)[2021-03-04]. https://arxiv.org/abs/1706.02413. [31] Gojcic Z, Zhou C F, Wegner J D, et al. The perfect match:3D point cloud matching with smoothed densities[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2019:5540-5549. [32] Zeng A, Song S R, Nießner M, et al. 3DMatch:learning local geometric descriptors from RGB-D reconstructions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:199-208. [33] Aoki Y, Goforth H, Srivatsan R A, et al. PointNetLK:robust & efficient point cloud registration using PointNet[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2019:7156-7165. [34] Wang Y, Solomon J. Deep closest point:learning representations for point cloud registration[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27-November 2, 2019, Seoul, Korea (South). IEEE, 2019:3522-3531. [35] Wu Z R, Song S R, Khosla A, et al. 3D ShapeNets:a deep representation for volumetric shapes[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015, Boston, MA, USA. IEEE, 2015:1912-1920. [36] Schnabel R, Wahl R, Klein R. Efficient RANSAC for point-cloud shape detection[J]. Computer Graphics Forum, 2007, 26(2):214-226. [37] Hackel T, Savinov N, Ladicky L, et al. semantic3d.net:a new large-scale point cloud classification benchmark[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-1/W1:91-98. [38] Lai K, Bo L F, Fox D. Unsupervised feature learning for 3D scene labeling[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). May 31-June 7, 2014, Hong Kong, China. IEEE, 2014:3050-3057. [39] Dong Z, Yang B S, Liang F X, et al. Hierarchical registration of unordered TLS point clouds based on binary shape context descriptor[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144:61-79. |