[1] 张妙然, 刘畅. 基于特征筛选和二级分类的极化SAR建筑提取算法[J]. 中国科学院大学学报, 2018, 35(1):89-95. DOI:10.7523/j.issn.2095-6134.2018.01.012. [2] 马肖肖, 程博, 刘岳明, 等. 基于极化特征和纹理特征的PolSAR影像建筑物提取方法[J]. 中国科学院大学学报, 2019, 36(5):682-693. DOI:10.7523/j.issn.2095-6134.2019.05.014. [3] 刘杉, 张风丽, 韦诗莹, 等. 基于极化分解组合的SAR图像视觉优化和建筑物损毁评估[J]. 中国科学院大学学报, 2020, 37(6):750-759. DOI:10.7523/j.issn.2095-6134.2020.06.005. [4] Lee J S, Grunes M R, Kwok R. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution[J]. International Journal of Remote Sensing, 1994, 15(11):2299-2311. DOI:10.1080/01431169408954244. [5] Gomez L, Alvarez L, Mazorra L, et al. Fully PolSAR image classification using machine learning techniques and reaction-diffusion systems[J]. Neurocomputing, 2017, 255:52-60. DOI:10.1016/j.neucom.2016.08.140. [6] Wu Q, Hou B, Wen Z D, et al. Variational learning of mixture wishart model for PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):141-154. DOI:10.1109/TGRS.2018.2852633. [7] Bi H X, Xu L, Cao X Y, et al. Polarimetric SAR image semantic segmentation with 3D discrete wavelet transform and Markov random field[J]. IEEE Transactions on Image Processing, 2020, 29:6601-6614. DOI:10.1109/TIP.2020.2992177. [8] Song W Y, Li M, Zhang P, et al. Mixture WGГ-MRF model for PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):905-920. DOI:10.1109/TGRS.2017.2756621. [9] Liu C, Liao W Z, Li H C, et al. Semi-supervised classification of polarimetric SAR images using Markov random field and two-level wishart mixture model[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. July 28-August 2, 2019, Yokohama, Japan. IEEE, 2019:990-993. DOI:10.1109/IGARSS.2019.8898985. [10] Guan D D, Xiang D L, Dong G G, et al. SAR image classification by exploiting adaptive contextual information and composite kernels[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(7):1035-1039. DOI:10.1109/LGRS.2018.2821711. [11] Li Y, Yin Q, Wang Y P, et al. Multi-aspect polarimetric SAR image scattering feature information coding and classification with machine learning approach[C]//EUSAR 2021; 13th European Conference on Synthetic Aperture Radar. March 29-April 1, 2021, online. VDE, 2021:1-4. DOI:10.1109/APSAR46974.2019.9048589. [12] Yin Q, Cheng J D, Zhang F, et al. Interpretable POLSAR image classification based on adaptive-dimension feature space decision tree[J]. IEEE Access, 2020, 8:173826-173837. DOI:10.1109/ACCESS.2020.3023134. [13] Zhang X T, Xu J, Chen Y Y, et al. Coastal wetland classification with GF-3 polarimetric SAR imagery by using object-oriented random forest algorithm[J]. Sensors, 2021, 21(10):3395. DOI:10.3390/s21103395. [14] Du P J, Samat A, Waske B, et al. Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105:38-53. DOI:10.1016/j.isprsjprs.2015.03.002. [15] Ustuner M, Sanli F B, Abdikan S, et al. A booster analysis of extreme gradient boosting for crop classification using PolSAR imagery[C]//2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). July 16-19, 2019, Istanbul, Turkey. IEEE, 2019:1-4. DOI:10.1109/Agro-Geoinformatics.2019.8820698. [16] Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6):610-621. DOI:10.1109/TSMC.1973.4309314. [17] 邓滢, 张红, 王超, 等. 结合纹理与极化分解的面向对象极化SAR水体提取方法[J]. 遥感技术与应用, 2016, 31(4):714-723. DOI:10.11873/j.issn.1004-0323.2016.4.0714. [18] Zhai W, Shen H F, Huang C L, et al. Fusion of polarimetric and texture information for urban building extraction from fully polarimetric SAR imagery[J]. Remote Sensing Letters, 2016, 7(1):31-40. DOI:10.1080/2150704X.2015.1101179. [19] Nie Y L, Zeng Q M, Zhang H Z, et al. Building damage detection based on OPCE matching algorithm using a single post-event PolSAR data[J]. Remote Sensing, 2021, 13(6):1146. DOI:10.3390/rs13061146. [20] Masjedi A, Zoej M J V, Maghsoudi Y. Classification of polarimetric SAR images based on modeling contextual information and using texture features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2):932-943. DOI:10.1109/TGRS.2015.2469691. [21] Luo S Y, Sarabandi K, Tong L, et al. A SAR image classification algorithm based on multi-feature polarimetric parameters using FOA and LS-SVM[J]. IEEE Access, 2019, 7:175259-175276. DOI:10.1109/ACCESS.2019.2957547. [22] Pierce L E, Ulaby F T, Sarabandi K, et al. Knowledge-based classification of polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5):1081-1086. DOI:10.1109/36.312896. [23] Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1):68-78. DOI:10.1109/36.551935. [24] Kandaswamy U, Adjeroh D A, Lee M C. Efficient texture analysis of SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9):2075-2083. DOI:10.1109/TGRS.2005.852768. [25] Yin Q, Hong W, Zhang F, et al. Optimal combination of polarimetric features for vegetation classification in PolSAR image[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(10):3919-3931. DOI:10.1109/JSTARS.2019.2940973. [26] Ke G, Meng Q, Finley T, et al. Lightgbm:a highly efficient gradient boosting decision tree[C/OL]. 31st Conference on Neural Information Processing Systems (NIPS 2017). December 4-9, 2017, Long Beach, CA, USA. Curran Associates, Inc, 2017.[2022-01-15]. https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf. [27] Zhou Y, Wang H P, Xu F, et al. Polarimetric SAR image classification using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12):1935-1939. DOI:10.1109/LGRS.2016.2618840. [28] Zhang Z M, Wang H P, Xu F, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12):7177-7188. DOI:10.1109/TGRS.2017.2743222. [29] Xie W, Ma G N, Zhao F, et al. PolSAR image classification via a novel semi-supervised recurrent complex-valued convolution neural network[J]. Neurocomputing, 2020, 388:255-268. DOI:10.1016/j.neucom.2020.01.020. [30] Zhang P, Tan X F, Li B B, et al. PolSAR image classification using hybrid conditional random fields model based on complex-valued 3-D CNN[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3):1713-1730. DOI:10.1109/TAES.2021.3050648. [31] Xiao D L, Liu C, Wang Q, et al. PolSAR image classification based on dilated convolution and pixel-refining parallel mapping network in the complex domain[EB/OL]. arXiv:1909.10783v2. (2019-09-24)[2022-03-15]. https://arxiv.org/abs/1909.10783v2. [32] Dong H W, Zhang L M, Lu D, et al. Attention-based polarimetric feature selection convolutional network for PolSAR image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. DOI:10.1109/LGRS.2020.3021373. [33] Cheng J D, Zhang F, Xiang D L, et al. PolSAR image land cover classification based on hierarchical capsule network[J]. Remote Sensing, 2021, 13(16):3132. DOI:10.3390/rs13163132. [34] Ren X F, Malik J. Learning a classification model for segmentation[C]//Proceedings Ninth IEEE International Conference on Computer Vision. October 13-16, 2003, Nice, France. IEEE, 2003:10-17. DOI:10.1109/ICCV.2003.1238308. [35] Yan J J, Yu Y N, Zhu X Y, et al. Object detection by labeling superpixels[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. June 7-12, 2015, Boston, MA, USA. IEEE, 2015:5107-5116. DOI:10.1109/CVPR.2015.7299146. [36] Yeo D, Son J, Han B, et al. Superpixel-based tracking-by-segmentation using Markov chains[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:511-520. DOI:10.1109/CVPR.2017.62. [37] Sun W, Liao Q M, Xue J H, et al. SPSIM:a superpixel-based similarity index for full-reference image quality assessment[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2018, 27(9):4232-4244. DOI:10.1109/TIP.2018.2837341. [38] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282. DOI:10.1109/TPAMI.2012.120. [39] Friedman J H. Greedy function approximation:a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5):1189-1232. DOI:10.1214/aos/1013203451. [40] Zuo Y X, Guo J Y, Zhang Y T, et al. A deep vector quantization clustering method for polarimetric SAR images[J]. Remote Sensing, 2021, 13(11):2127. DOI:10.3390/rs13112127. |