[1] Maltoni D, Maio D, Jain A K, et al. Handbook of fingerprint recognition[M]. London:Springer London, 2009. DOI:10.1007/978-1-84882-254-2. [2] Jain A K, Ross A, Prabhakar S. An introduction to biometric recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(1):4-20. DOI:10.1109/TCSVT.2003.818349. [3] Bolle R M, Pankanti S U, Yao Y S. System and method for determining the quality of fingerprint images:US5963656[P]. 1999-10-05. [4] Shen L L, Kot A, Koo W M. Quality measures of fingerprint images[C]//International Conference on Audio-and Video-Based Biometric Person Authentication. Springer, Berlin, Heidelberg, 2001:266-271. DOI:10.1007/3-540-45344-X_39. [5] Tabassi E, Wilson C L, Watson C I. Fingerprint image quality[R]. National Institute of Standards and Technology, 2004. DOI:10.6028/nist.ir.7151. [6] ANSI. ISO/IEC 29794-1:2009:Information technology-Biometric sample quality-Part 1:Framework[EB/OL].(2009-08)[2022-01-22]. https://www.iso.org/standard/43583.html. [7] ANSI. ISO/IEC TR 29794-4:2010:Information technology-Biometric sample quality-Part 4:Finger image data[EB/OL]. (2010-04)[2022-01-22]. https://www.iso.org/standard/50911.html. [8] ANSI. ISO/IEC 29794-4:2017:Information technology-Biometric sample quality-Part 4:Finger image data[EB/OL]. (2017-09)[2022-01-22]. https://www.iso.org/standard/62791.html. [9] NIST. Development of NFIQ 2.0[EB/OL]. (2014-04)[2022-01-22]. http://www.nist.gov/itl/iad/ig/development_nfiq_2.cfm. [10] Li X, Wang R X, Li M Q, et al. A hybrid quality estimation algorithm for fingerprint images[C]//Biometric Recognition, 2016:214-223. DOI:10.1007/978-3-319-46654-5_24. [11] Richter R, Gottschlich C, Mentch L, et al. Smudge noise for quality estimation of fingerprints and its validation[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(8):1963-1974. DOI:10.1109/TIFS.2018.2889258. [12] Chen C H, An C S, Chen C Y. Fingerprint quality assessment based on texture and geometric features[J]. Journal of Imaging Science and Technology, 2020, 64(4):40403-1-40403-7. DOI:10.2352/j.imagingsci.technol.2020.64.4.040403. [13] Agarwal D, Bansal A. Assessment of latent fingerprint image quality based on level 1, level 2, and texture features[C]//International Conference on Innovative Computing and Communications, 2021:489-501. DOI:10.1007/978-981-15-5113-0_38. [14] Hendre M, Patil S, Abhyankar A. Utility of quality metrics in partial fingerprint recognition[J]. International Journal of Computing and Digital Systems, 2021, 10(1):839-849. DOI:10.12785/ijcds/100177. [15] 中华人民共和国公安部. 指纹特征规范第5部分:指纹细节特征点标志方法:GA 774.5-2008[S]. 北京:中国标准出版社, 2008. [16] 中华人民共和国公安部. 十指指纹图像数据复现动态链接库接口:GA 785-2008[S]. 北京:中国标准出版社, 2008. [17] 中华人民共和国公安部. 居民身份证指纹采集和比对技术规范:GA/T 1012-2019[S]. 北京:中国标准出版社, 2012. [18] 江璐, 赵彤, 吴敏. 基于深度卷积神经网络的指纹纹型分类算法[J]. 中国科学院大学学报, 2016, 33(6):808-814. DOI:10.7523/j.issn.2095-6134.2016.06.013. [19] Qin J, Han C Y, Bai C C, et al. Multi-scaling detection of singular points basedon fully convolutional networks in fingerprint images[C]//Biometric Recognition, 2017:221-230. DOI:10.1007/978-3-319-69923-3_24. [20] Li J, Feng J J, Kuo C C J. Deep convolutional neural network for latent fingerprint enhancement[J]. Signal Processing:Image Communication, 2018, 60:52-63. DOI:10.1016/j.image.2017.08.010. [21] Liu Y H, Zhou B C, Han C Y, et al. A method for singular points detection based on faster-RCNN[J]. Applied Sciences, 2018, 8(10):1853. DOI:10.3390/app8101853. [22] Zhou B C, Han C Y, Liu Y H, et al. Fast minutiae extractor using neural network[J]. Pattern Recognition, 2020, 103:107273. DOI:10.1016/j.patcog.2020.107273. [23] Liu Y H, Zhou B C, Han C Y, et al. A novel method based on deep learning for aligned fingerprints matching[J]. Applied Intelligence, 2020, 50(2):397-416. DOI:10.1007/s10489-019-01530-4. [24] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:770-778. DOI:10.1109/CVPR.2016.90. [25] Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017:2261-2269. DOI:10.1109/CVPR.2017.243. [26] Kingma D P, Ba J. Adam:a method for stochastic optimization[EB/OL]. arXiv:1412.6980v9[cs.LG]. (2017-01-30)[2022-01-22]. https://arxiv.org/abs/1412.6980. [27] Gonzalez R C, Woods R E. Digital image processing[M]. 2nd ed. New Jersey:Prentice Hall, 2002. [28] Kass M, Witkin A. Analyzing oriented patterns[J]. Computer Vision, Graphics, and Image Processing, 1987, 37(3):362-385. DOI:10.1016/0734-189X(87)90043-0. [29] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66. DOI:10.1109/tsmc.1979.4310076. [30] Suzuki S, be K. Topological structural analysis of digitized binary images by border following[J]. Computer Vision, Graphics, and Image Processing, 1985, 30(1):32-46. DOI:10.1016/0734-189X(85)90016-7. [31] Maio D, Maltoni D, Cappelli R, et al. FVC2000:fingerprint verification competition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3):402-412. DOI:10.1109/34.990140. [32] Maio D, Maltoni D, Cappelli R, et al. FVC2002:second fingerprint verification competition[C]//2002 International Conference on Pattern Recognition. August 11-15, 2002, Quebec City, QC, Canada. IEEE, 2002:811-814. DOI:10.1109/ICPR.2002.1048144. [33] Watson C I, Garris M D, Tabassi E, et al. User's guide to NIST biometric image software (NBIS)[R]. National Institute of Standards and Technology, 2007. DOI:10.6028/nist.ir.7392. [34] Watson C I, Wilson C L. NIST special database 4:fingerprint database[R/OL]. National Institute of Standards and Technology (1992-03-17)[2022-01-22]. http://www.informatik.uni-ulm.de/ni/Lehre/SS03/ENIPRAKT/nist_sd4.pdf. |