[1] DiFonzo N, Bordia P. Rumor psychology: social and organizational approaches[M]. Washington: American Psychological Association, 2007. DOI: 10.1037/11503-000. [2] Kwak H, Lee C, Park H, et al. What is Twitter, a social network or a news media?[C]//Proceedings of the 19th International Conference on World Wide Web-WWW’10. April 26-30, 2010. Raleigh, North Carolina, USA. New York: ACM Press, 2010: DOI:10.1145/1772690.1772751. [3] Vosoughi S, Roy D, Aral S. The spread of true and false news online[J]. Science, 2018, 359(6380): 1146-1151. DOI:10.1126/science.aap9559. [4] Hosni A I E, Li K. Minimizing the influence of rumors during breaking news events in online social networks[J]. Knowledge-Based Systems, 2020, 193: 105452. DOI:10.1016/j.knosys.2019.105452. [5] Tong G A, Wu W L, Guo L, et al. An efficient randomized algorithm for rumor blocking in online social networks[J]. IEEE Transactions on Network Science and Engineering, IEEE, 7(2): 845-854. 2020, DOI:10.1109/TNSE.2017.2783190. [6] Zhu J M, Ni P K, Wang G Q. Activity minimization of misinformation influence in online social networks[J]. IEEE Transactions on Computational Social Systems, 2020, 7(4): 897-906. DOI:10.1109/TCSS.2020.2997188. [7] Kimura M, Saito K, Motoda H. Blocking links to minimize contamination spread in a social network[J]. ACM Transactions on Knowledge Discovery from Data, 2009, 3(2): 9. DOI:10.1145/1514888.1514892. [8] Nandi A K, Medal H R. Methods for removing links in a network to minimize the spread of infections[J]. Computers & Operations Research, 2016, 69: 10-24. DOI:10.1016/j.cor.2015.11.001. [9] Budak C, Agrawal D, El Abbadi A. Limiting the spread of misinformation in social networks[C]//Proceedings of the 20th International Conference on World Wide Web-WWW'11. March 28-April 1, 2011. Hyderabad, India. New York: ACM Press, 2011: DOI:10.1145/1963405.1963499. [10] Zhu J M, Ghosh S, Wu W L. Robust rumor blocking problem with uncertain rumor sources in social networks[J]. World Wide Web, 2021, 24(1): 229-247. DOI: 10.1007/s11280-020-00841-8. [11] Hosni A I E, Li K, Ahmad S. DARIM: dynamic approach for rumor influence minimization in online social networks[C]//Neural Information Processing, 2019: 619-630. DOI: 10.1007/978-3-030-36711-4_52. [12] Wang Y, Cong G, Song G J, et al. Community-based greedy algorithm for mining top-k influential nodes in mobile social networks[C]//KDD’10: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2010: 1039-1048. DOI:10.1145/1835804.1835935. [13] Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network[C]//KDD’03: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2003: 137-146. DOI:10.1145/956750.956769. [14] Leskovec J, Krause A, Guestrin C, et al. Cost-effective outbreak detection in networks[C]//KDD’07: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2007: 420-429. DOI:10.1145/1281192.1281239. [15] Chen W, Wang Y J, Yang S Y. Efficient influence maximization in social networks[C]//KDD’09: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2009: 199-208. DOI:10.1145/1557019.1557047. [16] Ilyas M U, Radha H. Identifying influential nodes in online social networks using principal component centrality[C]//2011 IEEE International Conference on Communications. June 5-9, 2011, Kyoto, Japan. IEEE, 2011: 1-5. DOI:10.1109/icc.2011.5963147. [17] Ma Q, Ma J. Identifying and ranking influential spreaders in complex networks with consideration of spreading probability[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 465: 312-330. DOI:10.1016/j.physa.2016.08.041. [18] Lv Z W, Zhao N, Xiong F, et al. A novel measure of identifying influential nodes in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 523: 488-497. DOI:10.1016/j.physa.2019.01.136. [19] Benevenuto F, Magno G, Rodrigues T, et al. Detecting spammers on twitter[C]//Seventh annual Collaboration, Electronic messaging, Anti-Abuse and Spam Conference July 13-14, 2010, Redmond, Washington, US. 2010: DOI:10.1.1.297.5340. [20] Gupta A, Kaushal R. Towards detecting fake user accounts in facebook[C]//2017 ISEA Asia Security and Privacy-ISEASP. January 29-February 1, 2017, Surat, India. IEEE, 2017: 1-6. DOI:10.1109/ISEASP.2017.7976996. [21] Kitsak M, Gallos L K, Havlin S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6(11): 888-893. DOI: 10.1038/nphys1746. [22] Agha Mohammad Ali Kermani M, Badiee A, Aliahmadi A, et al. Introducing a procedure for developing a novel centrality measure (sociability centrality) for social networks using TOPSIS method and genetic algorithm[J]. Computers in Human Behavior, 2016, 56: 295-305. DOI:10.1016/j.chb.2015.11.008. [23] Dewi F K, Yudhoatmojo S B, Budi I. Identification of opinion leader on rumor spreading in online social network twitter using edge weighting and centrality measure weighting[C]//2017 Twelfth International Conference on Digital Information Management (ICDIM). September 12-14, 2017, Fukuoka, Japan. IEEE, 2017: 313-318. DOI:10.1109/ICDIM.2017.8244680. [24] Cai J, Luo J W, Wang S L, et al. Feature selection in machine learning: a new perspective[J]. Neurocomputing, 2018, 300: 70-79. DOI:10.1016/j.neucom.2017.11.077. [25] Inuwa-Dutse I, Liptrott M, Korkontzelos I. Detection of Spam-posting accounts on twitter[J]. Neurocomputing, 2018, 315: 496-511. DOI: 10.1016/j.neucom.2018.07.044. [26] Zheng X H, Zeng Z P, Chen Z Y, et al. Detecting spammers on social networks[J]. Neurocomputing, 2015, 159: 27-34. DOI:10.1016/j.neucom.2015.02.047. [27] Qu C Q, Zhan X X, Wang G H, et al. Temporal information gathering process for node ranking in time-varying networks[J]. Chaos (Woodbury, N.Y.), 2019, 29(3): 033116. DOI:10.1063/1.5086059. [28] Hamilton W L, Ying R, Leskovec J. Representation learning on graphs: methods and applications [EB/OL]. arXiv:1709.05584. (2017-09-17) [2018-04-10]. https://arxiv.org/abs/1709.05584. [29] Zhang M H, Chen Y X. Link prediction based on graph neural networks [EB/OL]. arXiv:1802.09691. (2018-02-27) [2018-12-03]. https://arxiv.org/abs1802.09691. [30] Yu E Y, Wang Y P, Fu Y, et al. Identifying critical nodes in complex networks via graph convolutional networks[J]. Knowledge-Based Systems, 2020, 198: 105893. DOI:10.1016/j.knosys.2020.105893. [31] Zhao G H, Jia P, Zhou A M, et al. InfGCN: identifying influential nodes in complex networks with graph convolutional networks[J]. Neurocomputing, 2020, 414: 18-26. DOI:10.1016/j.neucom.2020.07.028. [32] Xiao Y P, Yang Q F, Sang C Y, et al. Rumor diffusion model based on representation learning and anti-rumor[J]. IEEE Transactions on Network and Service Management, 2020, 17(3): 1910-1923. DOI:10.1109/TNSM.2020.2994141. [33] Zhang J, Liu B, Tang J, et al. Social influence locality for modeling retweeting behaviors[C]//IJCAI’13: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. August 01 2013, Beijing, China. 2013: 2761-2767. [34] Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors [EB/OL]. arXiv:1207.0580. (2012-07-03) [2017-07-03]. https://arxiv.org/abs1207.0580. [35] Kingma D P, Ba J, Adam: a method for stochastic optimization [EB/OL]. arXiv:1412.6980. (2014-12-22) [2017-01-30]. https://arxiv.org/abs1412.6980. [36] Prechelt L. Early stopping-but when? [M]//Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998: 55-69. DOI:10.1007/3-540-49430-8_3. [37] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. DOI:10.1038/323533a0. [38] Wang G S. A survey on training algorithms for support vector machine classifiers[C]//2008 Fourth International Conference on Networked Computing and Advanced Information Management. September 2-4, 2008, Gyeongju, Korea (South). IEEE, 2008: 123-128. DOI:10.1109/NCM.2008.103. [39] Liao Y H, Vemuri V R. Use of K-nearest neighbor classifier for intrusion detection[J]. Computers & Security, 2002, 21(5): 439-448. DOI:10.1016/S0167-4048(02)00514-X. [40] Menard S. Standards for standardized logistic regression coefficients[J]. Social Forces, 2011, 89(4): 1409-1428. DOI:10.1093/sf/89.4.1409. |