Journal of University of Chinese Academy of Sciences ›› 2026, Vol. 43 ›› Issue (1): 1-13.DOI: 10.7523/j.ucas.2025.043
• Review Article • Next Articles
Yanbin HAO1,2, Mingzi WU2, Fuqi WEN2, Xin WANG3, Tong ZHAO3, Jie LIU4, Yanfen WANG1,5(
)
Received:2025-05-26
Revised:2025-07-03
Online:2026-01-15
Contact:
Yanfen WANG
CLC Number:
Yanbin HAO, Mingzi WU, Fuqi WEN, Xin WANG, Tong ZHAO, Jie LIU, Yanfen WANG. Advances in ecosystem regime shifts and tipping mechanisms: a comprehensive review[J]. Journal of University of Chinese Academy of Sciences, 2026, 43(1): 1-13.
| 模型名称 | 方程形式 | 主要生态学应用场景 |
|---|---|---|
| Logistic 增长模型 | 描述单一种群在环境容纳量限制下的增长过程,能够展现由初期指数增长到资源饱和时所形成的平衡态或稳定态[ | |
| Lotka-Volterra 捕食-被捕食模型 | 猎物种群动态: 捕食者种群动态: | 捕食者与被捕食者之间的相互作用(种群内部的Logistics增长以及种群间相互影响的耦合),揭示种群周期性波动、多重平衡态乃至种群崩溃的可能条件[ |
| 竞争模型 | 多物种非捕食的相互作用,每个物种的增长受自身密度和竞争者密度的联合抑制。通过量化竞争系数(α)与环境容纳量(K)的交互作用,揭示群落演替方向[ | |
| 消费者-资源模型 | 描述物种间通过资源消耗形成相互作用,通过量化功能响应、资源竞争与临界阈值来预测鱼类资源与捕捞强度的平衡点,制定最大可持续产量、预警水体富营养化[ |
Table 1 Common ODE models
| 模型名称 | 方程形式 | 主要生态学应用场景 |
|---|---|---|
| Logistic 增长模型 | 描述单一种群在环境容纳量限制下的增长过程,能够展现由初期指数增长到资源饱和时所形成的平衡态或稳定态[ | |
| Lotka-Volterra 捕食-被捕食模型 | 猎物种群动态: 捕食者种群动态: | 捕食者与被捕食者之间的相互作用(种群内部的Logistics增长以及种群间相互影响的耦合),揭示种群周期性波动、多重平衡态乃至种群崩溃的可能条件[ |
| 竞争模型 | 多物种非捕食的相互作用,每个物种的增长受自身密度和竞争者密度的联合抑制。通过量化竞争系数(α)与环境容纳量(K)的交互作用,揭示群落演替方向[ | |
| 消费者-资源模型 | 描述物种间通过资源消耗形成相互作用,通过量化功能响应、资源竞争与临界阈值来预测鱼类资源与捕捞强度的平衡点,制定最大可持续产量、预警水体富营养化[ |
| 模型名称 | 模型方程 | 生态学应用场景 |
|---|---|---|
| 反应-扩散基础模型 | 描述入侵物种沿地理梯度扩散的临界速率,分析种群扩张的稳定性条件[ | |
| 反应-扩散扩展模型 | 模拟珊瑚-藻类竞争的空间动态,识别藻类入侵的临界扩散速率[ | |
| 反应-扩散-对流模型 | 模拟河流生态系统中污染物扩散与浮游植物爆发的耦合过程[ | |
| 空间模式形成模型 | 解释干旱区植被斑块自组织现象,揭示扩散系数比对斑块稳定性的影响[ | |
| 随机偏微分方程 (SPDE) | 预测森林害虫爆发的时空异质性,量化气候波动对种群扩散的随机扰动效应[ |
Table 2 Common PDE models
| 模型名称 | 模型方程 | 生态学应用场景 |
|---|---|---|
| 反应-扩散基础模型 | 描述入侵物种沿地理梯度扩散的临界速率,分析种群扩张的稳定性条件[ | |
| 反应-扩散扩展模型 | 模拟珊瑚-藻类竞争的空间动态,识别藻类入侵的临界扩散速率[ | |
| 反应-扩散-对流模型 | 模拟河流生态系统中污染物扩散与浮游植物爆发的耦合过程[ | |
| 空间模式形成模型 | 解释干旱区植被斑块自组织现象,揭示扩散系数比对斑块稳定性的影响[ | |
| 随机偏微分方程 (SPDE) | 预测森林害虫爆发的时空异质性,量化气候波动对种群扩散的随机扰动效应[ |
| [1] | Armstrong McKay D I, Staal A, Abrams J F, et al. Exceeding 1.5 ℃ global warming could trigger multiple climate tipping points[J]. Science, 2022, 377(6611): eabn7950. DOI:10.1126/science.abn7950 . |
| [2] | Calvin K, Dasgupta D, Krinner G, et al. Climate change 2023: synthesis report[R]. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.IPCC, Geneva, Switzerland. 2023[2024-11-14]. https://www.ipcc.ch/report/ar6/syr/. DOI:10.59327/IPCC/AR6-9789291691647. |
| [3] | Lenton T M, Rockström J, Gaffney O, et al. Climate tipping points: too risky to bet against[J]. Nature, 2019, 575(7784): 592-595. DOI:10.1038/d41586-019-03595-0 . |
| [4] | Pithan F, Mauritsen T. Arctic amplification dominated by temperature feedbacks in contemporary climate models[J]. Nature Geoscience, 2014, 7(3): 181-184. DOI:10.1038/ngeo2071 . |
| [5] | Liu T, Chen D, Yang L, et al. Teleconnections among tipping elements in the Earth system[J]. Nature Climate Change, 2023, 13(1): 67-74. DOI:10.1038/s41558-022-01558-4 . |
| [6] | Springmann M, Clark M, Mason-D’Croz D, et al. Options for keeping the food system within environmental limits[J]. Nature, 2018, 562(7728): 519-525. DOI:10.1038/s41586-018-0594-0 . |
| [7] | 吕一河, 傅伯杰. 生态学中的尺度及尺度转换方法[J]. 生态学报, 2001(12): 2096-2105. |
| [8] | Brown J H, Gillooly J F, Allen A P, et al. Toward a metabolic theory of ecology[J]. Ecology, 2004, 85(7): 1771-1789. DOI:10.1890/03-9000 . |
| [9] | May R M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states[J]. Nature, 1977, 269(5628): 471-477. DOI:10.1038/269471a0 . |
| [10] | Thébault E, Fontaine C. Stability of ecological communities and the architecture of mutualistic and trophic networks[J]. Science, 2010, 329(5993): 853-856. DOI:10.1126/science.1188321 . |
| [11] | Bascompte J, Jordano P, Melián C J, et al. The nested assembly of plant–animal mutualistic networks[J]. Proceedings of the National Academy of Sciences, 2003, 100(16): 9383-9387. DOI:10.1073/pnas.1633576100 . |
| [12] | Levin S A. Self-organization and the emergence of complexity in ecological systems[J]. BioScience, 2005, 55(12): 1075-1082. DOI:10.1641/0006-3568(2005)055 [1075:SATEOC]2.0.CO;2. |
| [13] | 赵东升,张雪梅.生态系统多稳态研究进展[J]. 生态学报,2021,41(16):6314-6328. DOI:10.5846/stxb 202008212178 . |
| [14] | 李周园, 叶小洲, 王少鹏. 生态系统稳定性及其与生物多样性的关系[J]. 植物生态学报, 2021, 45(10): 1127-1139. DOI: 10.17521/cjpe.2020.0116 . |
| [15] | 唐海萍, 陈姣, 薛海丽. 生态阈值: 概念、方法与研究展望[J]. 植物生态学报, 2015, 39(9): 932-940 DOI:10.17521/cjpe.2015.0090 . |
| [16] | Dakos V, Carpenter S R, Van Nes E H, et al. Resilience indicators: prospects and limitations for early warnings of regime shifts[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370(1659): 20130263. DOI:10.1098/rstb.2013.0263 . |
| [17] | Scheffer M, Carpenter S, Foley J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413(6856): 591-596. DOI:10.1038/35098000 . |
| [18] | 吕一河, 陈利顶, 傅伯杰. 景观格局与生态过程的耦合途径分析[J]. 地理科学进展, 2007,26(3): 1-10. DOI: 10.11820/dlkxjz.2007.03.001 |
| [19] | Lewontin R C. The meaning of stability[J]. Brookhaven Symposia in Biology, 1969, 22: 13-24. |
| [20] | Hasler A D. Eutrophication of lakes by domestic drainage[J]. Ecology, 1947, 28(4): 383-395. DOI:10.2307/1931228 . |
| [21] | Holling C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4(1): 1-23. DOI:10.1146/annurev.es.04.110173.000245 . |
| [22] | Carpenter S, Walker B, Anderies J M, et al. From metaphor to measurement: resilience of what to what?[J]. Ecosystems, 2001, 4(8): 765-781. DOI:10.1007/s10021-001-0045-9 . |
| [23] | Price M F. Panarchy: understanding transformations in human and natural systems[J]. Biological Conservation, 2003, 114(2): 308-309. DOI:10.1016/S0006-3207(03)00041-7 . |
| [24] | Allen C R, Garmestani A S. Adaptive management of social-ecological systems[M]. Dordrecht: Springer, 2015:55-80. DOI:10.1007/978-94-017-9682-8 . |
| [25] | Scheffer M, Bolhuis J E, Borsboom D, et al. Quantifying resilience of humans and other animals[J]. Proceedings of the National Academy of Sciences, 2018, 115(47): 11883-11890. DOI:10.1073/pnas.1810630115 . |
| [26] | Wang J, Xu L, Wang E. Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations[J]. Proceedings of the National Academy of Sciences, 2008, 105(34): 12271-12276. DOI:10.1073/pnas.0800579105 . |
| [27] | Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease[J]. Genome Biology, 2017, 18(1): 83. DOI:10.1186/s13059-017-1215-1 . |
| [28] | Pettorelli N, Schulte To Bühne H, Tulloch A, et al. Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward[J]. Remote Sensing in Ecology and Conservation, 2018, 4(2): 71-93. DOI:10.1002/rse2.59 . |
| [29] | Strogatz S H. Nonlinear Dynamics and Chaos[M]. 2nd ed. Boca Raton: CRC Press, 2018. DOI:10.1201/9780429492563 . |
| [30] | Pearl R, Reed L J. On the rate of growth of the population of the United States since 1790 and Its mathematical representation[J]. Proceedings of the National Academy of Sciences, 1920, 6(6): 275-288. DOI:10.1073/pnas.6.6.275 . |
| [31] | Volterra V. Fluctuations in the abundance of a species considered mathematically[J]. Nature, 1926, 118(2972): 558-560. DOI:10.1038/118558a0 . |
| [32] | Gauze G F. The struggle for existence[M]. Baltimore: The Williams & Wilkins company, 1934. DOI:10.5962/bhl.title.4489 . |
| [33] | Lafferty K D, DeLeo G, Briggs C J, et al. A general consumer-resource population model[J]. Science, 2015, 349(6250): 854-857. DOI:10.1126/science.aaa6224 . |
| [34] | Jaime L, Batllori E, Lloret F. Bark beetle outbreaks in coniferous forests: a review of climate change effects[J]. European Journal of Forest Research, 2024, 143(1): 1-17. DOI:10.1007/s10342-023-01623-3 . |
| [35] | Hughes T P, Kerry J T, Baird A H, et al. Global warming impairs stock–recruitment dynamics of corals[J]. Nature, 2019, 568(7752): 387-390. DOI:10.1038/s41586-019-1081-y . |
| [36] | Dakos V, Carpenter S R, Brock W A, et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data[J]. PLoS ONE, 2012, 7(7): e41010. DOI:10.1371/journal.pone.0041010 . |
| [37] | Volpert V, Petrovskii S. Reaction-diffusion waves in biology: new trends, recent developments[J]. Physics of Life Reviews, 2025, 52: 1-20. DOI:10.1016/j.plrev.2024.11.007 . |
| [38] | McManus J W, Polsenberg J F. Coral–algal phase shifts on coral reefs: ecological and environmental aspects[J]. Progress in Oceanography, 2004, 60(2/3/4): 263-279. DOI:10.1016/j.pocean.2004.02.014 . |
| [39] | Wei J, Liu B, Ren G. Dynamics of a reaction-diffusion-advection system from river ecology with inflow[J]. studies in applied mathematics, 2025, 154(1): e70012. DOI:10.1111/sapm.70012 . |
| [40] | Consolo G, Currò C, Valenti G. Supercritical and subcritical Turing pattern formation in a hyperbolic vegetation model for flat arid environments[J]. Physica D: Nonlinear Phenomena, 2019, 398: 141-163. DOI:10.1016/j.physd.2019.03.006 . |
| [41] | Xu J, Yu Z, Zhang T, et al. Near‐optimal control of a stochastic model for mountain pine beetles with pesticide application[J]. Studies in Applied Mathematics, 2022, 149(3): 678-704. DOI:10.1111/sapm.12517 . |
| [42] | Morozov A, Poggiale J C. From spatially explicit ecological models to mean-field dynamics: the state of the art and perspectives[J]. Ecological Complexity, 2012, 10(1): 1-11. DOI:10.1016/j.ecocom.2012.04.001 . |
| [43] | Kuznetsov Y A. Elements of applied bifurcation theory[M]. Utrecht: Oxford University Press, 2023:55-58. DOI:10.1007/978-3-031-22007-4 . |
| [44] | Deb S, Banerjee M, Ghorai S. Analytical detection of stationary Turing pattern in a predator-prey system with generalist predator[J]. Mathematical Modelling of Natural Phenomena, 2022, 17: 33. DOI:10.1051/mmnp/2022032 . |
| [45] | Guo C, Zhang D, Du Z, et al. Effects of grazing on the grassland vegetation community characteristics in Inner Mongolia[J]. Journal of Resources and Ecology, 2021, 12(3): 319-331. DOI:10.5814/j.issn.1674-764x.2021.03.002 . |
| [46] | 张琨, 吕一河, 傅伯杰, 等. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020, 75(5): 949-960. DOI:10.11821/dlxb202005005 . |
| [47] | Van Belzen J, Van De Koppel J, Kirwan M L, et al. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation[J]. Nature Communications, 2017, 8(1): 15811. DOI:10.1038/ncomms15811 . |
| [48] | Hu Z, Dakos V, Rietkerk M. Using functional indicators to detect state changes in terrestrial ecosystems[J]. Trends in Ecology & Evolution, 2022, 37(12): 1036-1045. DOI:10.1016/j.tree.2022.07.011 . |
| [49] | Wang R, Dearing J A, Langdon P G, et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state[J]. Nature, 2012, 492(7429): 419-422. DOI:10.1038/nature11655 . |
| [50] | Holling C S. Understanding the complexity of economic, ecological, and social systems[J]. Ecosystems, 2001, 4(5): 390-405. DOI:10.1007/s10021-001-0101-5 . |
| [51] | Nash K L, Allen C R, Angeler D G, et al. Discontinuities, cross‐scale patterns, and the organization of ecosystems[J]. Ecology, 2014, 95(3): 654-667. DOI:10.1890/13-1315.1 . |
| [52] | Ordonez J C, Cavalcanti E J C, Carvalho M. Energy, exergy, entropy generation minimization, and exergoenvironmental analyses of energy systems: a mini-review[J]. Frontiers in Sustainability, 2022, 3: 902071. DOI:10.3389/frsus.2022.902071 . |
| [53] | Bodin Ö, Alexander S M, Baggio J, et al. Improving network approaches to the study of complex social-ecological interdependencies[J]. Nature Sustainability, 2019, 2(7): 551-559. DOI:10.1038/s41893-019-0308-0 . |
| [54] | Galán-Vásquez E, Perez-Rueda E. Identification of modules with similar Gene regulation and metabolic functions based on co-expression data[J]. Frontiers in Molecular Biosciences, 2019, 6: 139. DOI:10.3389/fmolb.2019.00139 . |
| [55] | Thirumalaikumar V P, Gorka M, Schulz K, et al. Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1[J]. Autophagy, 2021, 17(9): 2184-2199. DOI:10.1080/15548627.2020.1820778 . |
| [56] | Hackerott S, Martell H A, Eirin-Lopez J M. Coral environmental memory: causes, mechanisms, and consequences for future reefs[J]. Trends in Ecology & Evolution, 2021, 36(11): 1011-1023. DOI:10.1016/j.tree.2021.06.014 . |
| [57] | Wiśniewska M, O’Connell-Rodwell C E, Kilian J W, et al. Interplay of physical and social drivers of movement in male African savanna elephants[J]. Behavioral Ecology, 2024, 36(1): arae091. DOI:10.1093/beheco/arae091 . |
| [58] | Newman M E J. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences, 2006, 103(23): 8577-8582. DOI:10.1073/pnas.0601602103 . |
| [59] | Fletcher R J, Revell A, Reichert B E, et al. Network modularity reveals critical scales for connectivity in ecology and evolution[J]. Nature Communications, 2013, 4(1): 2572. DOI:10.1038/ncomms3572 . |
| [60] | Wang J, Barahona M, Tang Y J, et al. Natural connectivity of complex networks[J]. Chinese Physics Letters, 2010, 27(7): 078902. DOI:10.1088/0256-307X/27/7/078902 . |
| [61] | Isaac N J B, Jarzyna M A, Keil P, et al. Data integration for large-scale models of species distributions[J]. Trends in Ecology & Evolution, 2020, 35(1): 56-67. DOI:10.1016/j.tree.2019.08.006 . |
| [62] | Arazy O, Malkinson D. A framework of observer-based biases in citizen science biodiversity monitoring: semi-structuring unstructured biodiversity monitoring protocols[J]. Frontiers in Ecology and Evolution, 2021, 9: 693602. DOI:10.3389/fevo.2021.693602 . |
| [63] | Chang G J. Biodiversity estimation by environment drivers using machine/deep learning for ecological management[J]. Ecological Informatics, 2023, 78: 102319. DOI:10.1016/j.ecoinf.2023.102319 . |
| [64] | Wu D, Zhao X, Liang S, et al. Time-lag effects of global vegetation responses to climate change[J]. Global Change Biology, 2015, 21(9): 3520-3531. DOI:10.1111/gcb.12945 . |
| [65] | Bai Y, Han X, Wu J, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature, 2004, 431(7005): 181-184. DOI:10.1038/nature02850 . |
| [66] | 蒙旭辉, 李向林, 辛晓平, 等. 不同放牧强度下羊草草甸草原群落特征及多样性分析[J]. 草地学报, 2009, 17(2): 239-244. DOI:10.11733/j.issn.1007-0435.2009.02.020 . |
| [67] | Hiernaux P, Adamou Kalilou A, Kergoat L, et al. Woody plant decline in the Sahel of western Niger (1996–2017): is it driven by climate or land use changes?[J]. Journal of Arid Environments, 2022, 200: 104719. DOI:10.1016/j.jaridenv.2022.104719 . |
| [68] | Hinojo-Hinojo C, Castellanos A E, Huxman T, et al. Native shrubland and managed buffelgrass savanna in drylands: implications for ecosystem carbon and water fluxes[J]. Agricultural and Forest Meteorology, 2019, 268: 269-278. DOI:10.1016/j.agrformet.2019.01.030 . |
| [69] | Shanahan T M, Hughen K A, McKay N P, et al. CO2 and fire influence tropical ecosystem stability in response to climate change[J]. Scientific Reports, 2016, 6(1): 29587. DOI:10.1038/srep29587 . |
| [70] | Venegas R M, Acevedo J, Treml E A. Three decades of ocean warming impacts on marine ecosystems: a review and perspective[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2023, 212: 105318. DOI:10.1016/j.dsr2.2023.105318 . |
| [71] | Perry A L, Low P J, Ellis J R, et al. Climate change and distribution shifts in marine fishes[J]. Science, 2005, 308(5730): 1912-1915. DOI:10.1126/science.1111322 . |
| [72] | Dahms C, Killen S. Temperature change effects on marine fish range shifts: a meta-analysis of ecological and methodological predictors[J]. Global Change Biology, 2023, 29(1): 4459-4479. DOI:10.32942/X2C88T . |
| [73] | DeVries T, Quéré C, Andrews O, et al. Decadal trends in the ocean carbon sink[J]. Proceedings of the National Academy of Sciences, 2019, 116(24): 11646-11651. DOI:10.1073/pnas.1900371116 . |
| [74] | Hoegh-Guldberg O, Poloczanska E S, Skirving W, et al. Coral reef ecosystems under climate change and ocean acidification[J]. Frontiers in Marine Science, 2017, 4: 158. DOI:10.3389/fmars.2017.00158 . |
| [75] | Hughes T P, Kerry J T, Baird A H, et al. Global warming transforms coral reef assemblages[J]. Nature, 2018, 556(7702): 492-496. DOI:10.1038/s41586-018-0041-2 . |
| [76] | Wang S, Yu H, Dai C, et al. The dynamical behavior of a predator-prey system with Holling Type II functional response and Allee effect[J]. Applied Mathematics, 2020, 11(5): 407-425. DOI:10.4236/am.2020.115029 . |
| [77] | Wilmers C C, Estes J A, Edwards M, et al. Do trophic cascades affect the storage and flux of atmospheric carbon?: an analysis of sea otters and kelp forests[J]. Frontiers in Ecology and the Environment, 2012, 10(8): 409-415. DOI:10.1890/110176 . |
| [78] | Bonan G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320(5882): 1444-1449. DOI:10.1126/science.1155121 . |
| [79] | Lovejoy T E, Nobre C. Amazon tipping point[J]. Science Advances, 2018, 4(2): eaat2340. DOI:10.1126/sciadv.aat2340 . |
| [80] | Costa M H, Foley J A. Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia[J]. Journal of Climate, 2000, 13(1): 18-34. DOI:10.1175/1520-0442(2000)013<0018:CEODAD>2.0.CO;2 . |
| [81] | Spracklen D V, Arnold S R, Taylor C M. Observations of increased tropical rainfall preceded by air passage over forests[J]. Nature, 2012, 489(7415): 282-285. DOI:10.1038/nature11390 . |
| [82] | Euskirchen E S, Bennett A P, Breen A L, et al. Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada[J]. Environmental Research Letters, 2016, 11(10): 105003. DOI:10.1088/1748-9326/11/10/105003 . |
| [83] | Davidson A, Wang S. The effects of sampling resolution on the surface albedos of dominant land cover types in the North American boreal region[J]. Remote Sensing of Environment, 2004, 93(1-2): 211-224. DOI:10.1016/j.rse.2004.07.005 . |
| [84] | Janssens I A, Dieleman W, Luyssaert S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315-322. DOI:10.1038/ngeo844 . |
| [85] | Camenzind T, Hättenschwiler S, Treseder K K, et al. Nutrient limitation of soil microbial processes in tropical forests[J]. Ecological Monographs, 2018, 88(1): 4-21. DOI:10.1002/ecm.1279 . |
| [86] | 王汝南, 蔺兆兰, 王春梅. 氮沉降对森林土壤碳收支机制的影响[J]. 生态环境学报, 2011, 20(3): 576-582. DOI:10.16258/j.cnki.1674-5906.2011.03.011 . |
| [87] | Fu W, Wu H, Zhao A H, et al. Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects[J]. Chinese Journal of Plant Ecology, 2020, 44(5): 475-493. DOI:10.17521/cjpe.2019.0163 . |
| [88] | Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management, 2004, 196(1): 159-171. DOI:10.1016/j.foreco.2004.03.018 . |
| [89] | Lu X, Mao Q, Gilliam F S, et al. Nitrogen deposition contributes to soil acidification in tropical ecosystems[J]. Global Change Biology, 2014, 20(12): 3790-3801. DOI:10.1111/gcb.12665 . |
| [90] | Barnosky A D, Hadly E A, Bascompte J, et al. Approaching a state shift in Earth's biosphere[J]. Nature, 2012, 486(7401): 52-58. DOI:10.1038/nature11018 . |
| [91] | Shukla J, Nobre C, Sellers P. Amazon deforestation and climate change[J]. Science, 1990, 247(4948): 1322-1325. DOI:10.1126/science.247.4948.1322 . |
| [92] | Yadav J, Kumar A, Mohan R, et al. Anomalous Arctic Sea ice melting linked to recent warming amplification[EB/OL]. (2022-03-10)[2025-04-15]. . DOI:10.21203/rs.3.rs-1216059/v1 . |
| [93] | Wąs A, Krupin V, Kobus P, et al. Towards climate neutrality in Poland by 2050: assessment of policy implications in the Farm Sector[J]. Energies, 2021, 14(22): 7595. DOI:10.3390/en14227595 . |
| [94] | Moore J C, De Ruiter P C. Energetic food webs: an analysis of real and model ecosystems[M]. Oxford: Oxford University Press, 2012:40-45. DOI:10.1093/acprof:oso/9780198566182.001.0001 . |
| [95] | Yang H, Cao J, Hou X. Study on the evaluation and assessment of ecosystem service spatial differentiation at different scales in mountainous areas around the Beijing-Tianjin-Hebei Region, China[J]. International Journal of Environmental Research and Public Health, 2023, 20(2): 1639. DOI:10.3390/ijerph20021639 . |
| [96] | Landi P, Minoarivelo H O, Brännström Å, et al. Complexity and stability of ecological networks: a review of the theory[J]. Population Ecology, 2018, 60(4): 319-345. DOI:10.1007/s10144-018-0628-3 . |
| [97] | Hao Y, Wang X, Zhao T, et al. A framework for quantifying state transitions in complex ecosystems using energy flow networks[J]. Science Bulletin, 2025, in press. DOI:10.1016/j.scib.2025.04.076 . |
| [98] | Hughes T P, Anderson K D, Connolly S R, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene[J]. Science, 2018, 359(6371): 80-83. DOI:10.1126/science.aan8048 . |
| [99] | Liang M, Yang Q, Chase J M, et al. Unifying spatial scaling laws of biodiversity and ecosystem stability[J]. Science, 2025, 387(6740): eadl2373. DOI:10.1126/science.adl2373 . |
| [1] | MAO Ping, HUANG Dongxiao, WANG Yuhua, ZHOU Hua, WANG Haiyan, CHEN Huai. Big data analysis of status and trends of global change research [J]. , 2017, 34(4): 441-451. |
| [2] | YUAN Minshu, LI Mingxu, CHENG Hongyan, DING Juhua, LI Hanwei, PENG Changhui, ZHU Qiuan. Future trends in carbon use efficiency for Chinese terrestrial ecosystem based on CMIP5 model results [J]. , 2017, 34(4): 452-461. |
| [3] | XUE Dan, XIONG Wan, HE Yixin, ZHU Dan, WU Ning, CHEN Huai. Respiratory CO2 and CH4 emission fluxes from naturally grazing female yak in eastern region of Qinghai-Tibetan Plateau during alpine meadow growing season [J]. , 2017, 34(4): 487-497. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © Journal of University of Chinese Academy of Sciences
Support by Beijing Magtech Co.ltd support@magtech.com.cn