›› 2008, Vol. 25 ›› Issue (2): 224-232.DOI: 10.7523/j.issn.2095-6134.2008.2.013
• 论文 • Previous Articles Next Articles
XIANGWeiSHENGJieCHENZongHai
Received:
Revised:
Online:
Abstract: TheHammersteinmodeliscomposedofanonlinearstaticelementandalineardynamicelementserially,anditprovestobeeffectiveindescribingthebehaviorofmanychemicalprocesses.Byappropriateidentification,theintricatenonlinearcontrolproblemofthismodelcanbefacilitatedintotwoproblems:thecontrolofthelinearpartandthesolutionofthenonlinearpart.Inthispaper,amodelpredictivecontrolschemeisproposed,whichusesasetofneuralnetworkstoapproximatetheinverse mappingofthenonlinearblock.Thisneuralnetworksmethodneedntassumethatthenonlinearblockis apolynomialequation,thusitovercomesthedifficultythatnorealrootsexistforthepolynomialequation.Twosimulationexamples,includingapHneutralizationprocess,areusedtodemonstratetheeffectiveness ofthemethod.
Key words: modelpredictivecontrol, Hammersteinmodel, neuralnetworks
CLC Number:
TP13
XIANGWeiSHENGJieCHENZongHai. ModelpredictivecontrolbasedonneuralnetworksforHammersteintypenonlinearsystems[J]. , 2008, 25(2): 224-232.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal.ucas.ac.cn/EN/10.7523/j.issn.2095-6134.2008.2.013
http://journal.ucas.ac.cn/EN/Y2008/V25/I2/224