Welcome to Journal of University of Chinese Academy of Sciences,Today is

›› 2008, Vol. 25 ›› Issue (2): 224-232.DOI: 10.7523/j.issn.2095-6134.2008.2.013

• 论文 • Previous Articles     Next Articles

ModelpredictivecontrolbasedonneuralnetworksforHammersteintypenonlinearsystems

XIANGWeiSHENGJieCHENZongHai   

  1. DepartmentofAutomation,UniversityofScienceandTechnologyofChina,Hefei230027,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2008-03-15

Abstract: TheHammersteinmodeliscomposedofanonlinearstaticelementandalineardynamicelementserially,anditprovestobeeffectiveindescribingthebehaviorofmanychemicalprocesses.Byappropriateidentification,theintricatenonlinearcontrolproblemofthismodelcanbefacilitatedintotwoproblems:thecontrolofthelinearpartandthesolutionofthenonlinearpart.Inthispaper,amodelpredictivecontrolschemeisproposed,whichusesasetofneuralnetworkstoapproximatetheinverse mappingofthenonlinearblock.Thisneuralnetworksmethodneedntassumethatthenonlinearblockis apolynomialequation,thusitovercomesthedifficultythatnorealrootsexistforthepolynomialequation.Twosimulationexamples,includingapHneutralizationprocess,areusedtodemonstratetheeffectiveness ofthemethod.

Key words: modelpredictivecontrol, Hammersteinmodel, neuralnetworks

CLC Number: