[1] Guy R K. Unsolved problems in number theory [M]. New York-Berlin: Springer-Verlag, 1981.
[2] Sylvester J J. Sur inpossibilite de existence dun number parfait qui ne contient pas moins 5 diviseurs distincts [J]. Compte Rendus CVI, 1888, 20: 522-526.
[3] Dickson L E. Finiteness of the odd perfect and primitive abundant numbers with distinct primes factors [J]. Amer J Math, 1913, 35: 413-422.
[4] Kandold D H J. Folgenungen aus dem vorkommen einer gau β schen primzahl in der primfaktorzerlegung enier ungeraden vollkommenen zahl [J]. J Reine Angen Math, 1949, 186: 25-29.
[5] Kühnel U. Verscharfung der notwendigen bedinggungen für die existenz von ungeraden vorkommen zahlen [J]. Math Ⅰ, 1949, 52: 202-211.
[6] Webber G C. Non-existence of odd perfect numbers of the 32βpαp12β1…ps2βs [J]. Duke Math J, 1951, 18: 741-749.
[7] Gradstein I S. On odd perfect numbers [J]. Mat Sb, 1925, 32:476-510.
[8] Pomerance C. Odd perfect numbers are divisible by at least seven distinct primes [J]. Acta Arith, 1974, 25: 265-300.
[9] Chein E Z. An odd perfect number has least 8 prime factors [J]. Notices Math Soc, 1979, 26:365.
[10] Hagis P. Outline of a proof that every odd perfect number has eight prime factors [J]. Math Comp, 1980, 35:1027-1032.
[11] Nielsen P P. Odd perfect numbers have at least nine distinct prime factors [J]. Math Comp, 2007, 76: 2109-2120.
[12] Goto T, Ohno Y. Odd perfect numbers have a prime factor exceeding 108 [J]. Math Comp, 2008, 77: 1859-1868.
[13] Cohen G L, Sorli R M. On the number of distinct prime factors of odd perfect number [J]. Journal of Discrete Algorithms, 2003, 1: 21-35.
[14] Huang G X, Zhu T S, Huang X T, et al. A proof that every odd perfect number relatively prime to 3 has at least nine prime factors [J]. Mathematics Bulletin, 1994 (9): 35-38 (in Chinese). 黄贵贤,朱同生,黄小彤,等. 不被3整除的奇完全数至少有9个不同素因子的一个证法 [J]. 数学通报,1994 (9): 35-38.
|