[1] Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series [J]. Trans Amer Math Soc, 1952, 72:341-366.
[2] Christensen O. An introduction to frames and Riesz bases [M]. Boston: Birknuser,2002.
[3] 李登峰,薛明志. Banach空间上的基和框架 [M]. 北京: 科学出版社, 2007.
[4] Goyal V K, Kovasevic J, Kelner J A. Quantized frame expansions with erasures [J]. Appl Comput Harmonic Anal, 2001, 10(3):203-233.
[5] Hassibi B, Hochwald B, Shokrollahi A, et al. Representation theory for high-rate multiple-antenna code design [J]. IEEE Trans Inform Theory, 2001, 47(6):2355-2367.
[6] Chan R H, Riemenschneider S D, Shen L, et al. Tight frame: an effcient way for high-resolution image reconstruction [J]. Appl Comput Harmonic Anal, 2004, 17(1):91-115.
[7] Benedetto J J, Fickus M. Finite normalized tight frames [J]. Adv in Comput Math, 2003, 18(2-4): 357-385.
[8] Casazza P G, Kovasevic J. Equal-norm tight frames with erasures [J]. Adv in Comput Math, 2003, 18(2-4):387-430.
[9] Eldar Y C, Forney D D. Optimal tight frames and equantum measurement [J]. IEEE Trans Inform Theory, 2002, 48(4):599-610.
[10] Strohmer T, Heath R E. Grassmannian frames with applications to coding and communication [J]. Appl Comput Harmonic Anal, 2003, 14(2): 257-275.
[11] Holmes R B, Paulsen V I. Optimal frames for erasures [J]. Linear Alg Appl, 2004, 377(1):31-51.
[12] Bodmann B, Paulsen V. Frames, graphs and erasures [J]. Linear Alg Appl, 2005, 404(1):118-146.
[13] Tropp J A. Greed is good: Algorithmic results for sparse approximation [J]. IEEE Trans Inform Theory, 2004, 50(11):2231-2242.
[14] Heath R W, Strohmer T, Paulraj A J. On quasi-orthogonal signatures for CDMA systems [J]. IEEE Trans Inform Theory, 2002, 52(3):1217-1226.
[15] Tropp J A, Dhillon I S, Heath R W, et al. Designing structured tight frames via an alternating projection method [J]. IEEE Trans Inform Theory, 2005, 51(1):188-209.
[16] Sustik M A, Tropp J A, Dhillon I S, et al. On the existence of equiangular tight frames [J]. Linear Alg Appl, 2007, 426(2-3):619-635.
[17] Benedetto J J, Kolesar J. Geometric properties of Grassmannian frames for R2 and R3 [J]. EURASIP J Applied Signal Processing, 2006: 1-17.
[18] Renes J M. Equiangular tight frames from Paley tournaments [J]. Linear Alg Appl, 2007, 426:497-501.
[19] Strohmer T. A note on equiangular tight frames [J]. Linear Alg Appl, 2008, 429:326-330.
[20] Casazza P G, Redmond D, Tremain J C. Real equiangular frames [J]. Inform Sci and Syst, 2008, 715-720.
[21] Oktay O. Frame quantization and equiangular tight frames . Mathematics Univ Maryland at College Park, 2007.
[22] Tropp J A. Complex equiangular tight frames //Wavelets XI, Proceedings of SPIE. 2007, 5914: 1-14.
[23] Kalra D. Complex equiangular cyclic frames and erasures [J]. Linear Alg Appl, 2006, 419:373-399.
[24] Bodmann B G, Paulsen V I, Tomforde M. Equiangular tight frames from complex Seidel matrices containing cube roots of unity [J]. Linear Alg Appl, 2009, 430(1):396-417.
[25] Van Lint J H, Seidel J J. Equiangular point sets in elliptic geometry [J]. Proc Nederl Akad Wetensch Series A, 1966, 69:335-348.
[26] Eldar Y C, Balcskei H. Geometrically uniform frames [J]. IEEE Trans Inform Theory, 2003, 49(4): 993-1006.
[27] Conway J H, Hardin R, Sloane N. Packing lines, planes, etc: Packings in grassmanian spaces [J]. J Exp Math, 1996, 5:139-159.
[28] Conway J H, Sloane N. Sphere packing lattices and groups [M]. Berlin: Springer-Verlag, 1999.
[29] Renes J, Blume-Kohout R, Scott J, et al. Symmetric informationally complete quantum measurements [J]. J Math Phy, 2004, 45(6):2171.
[30] Lemmens P, Seidel J. Equiangular lines [J]. J of Alg, 1973, 24:495-512.
|