[1] Vonk M. A mini-course on toplogical strings //19th Nordic Network Meeting on Strings, Fields and Branes in Uppsala. 2004.
[2] Klemm A. Preliminary notes: introduction in topological string theory on Calabi-Yau manifolds . (2003-12-03) . http://www.math.ist.utl.pt/strings/AGTS/topstrings.pdf.
[3] Hori K, Katz S, Klemm A, et al. Mirror symmtry [M]. USA: American Mathematical Society, 2003.
[4] Huang M X, Klemm A, Quackenbush S. Topological strings theory on compact Calabi-Yau: modularity and boundary conditions [J]. Lect Notes Physics, 2009, 757: 45-102.
[5] Candelas P, Delaossa X C, Green P S, et al. A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory [J]. Nuclear Physics, 1991, B359: 21-74.
[6] Aganagic M, Dijkgraaf R, Klemm A, et al. Topologcal strings and integrable hierarchies [J]. Commun Math Phys, 2006, 261: 451-516.
[7] Dijkgraaf R, Verlinde E, Vonk M. On the partition sum of the NS five-brane . (2002-05-27) .http://arxiv.org/ps_cathe/hep-th/pdf/0205/0205281v1.pdf.
[8] Bershadsky M, Cecotti S, Ooguri H, et al. Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes [J]. Commun Math Phys, 1994, A311(11).
[9] Hosono S, Klemm A, Theisen S, et al. Mirror symmetry, mirror map and applications to Calabi-Yau hypersurface [J]. Commun Math Phys, 1995, 167: 301-350.
[10] Candelas P, Delaossa X C, Font A, et al. Mirror symmetry for two parameter models-I [J]. Nucl Phys, 1994, B416: 481-538.
[11] Klemm A. Consideration of one-modulus Calabi-Yau compactifications: Picard-Fuchs equations, khler potentials and mirror maps [J]. Nucl Phys, 1993, B389:153-180.
[12] Klemm A, Kreuzer M, Riegler E, et al. Topological string amplitudes, complete intersection Calabi-Yau spaces and threshold corrections [J]. JHEP, 2005, 0505:023.
[13] Yamaguchi S, Yau S T. Topological string partition functions as polynomials [J]. JHEP, 2004, 0407:047.
[14] Grimm T W, Klemm A, Mario M, et al. Direct integration of the topological string [J]. JHEP, 2007, 0708:058.
[15] Alim M, Lange J D. Polynomial structure of the (open) topological string partition function [J]. JHEP, 2007, 0710:045.
[16] Aganagic M, Bouchard V, Klemm A. Topological strings and (almost) modular forms [J]. Commun Math Phys, 2008, 277: 771-819.
[17] Günaydin M, Neitzke A, Piline B. Topologcal wave functions and heat equations [J]. JHEP, 2006, 0612:070.
[18] Ceresole A, Auria R D, Ferrarb S. The symplectic structure of N=2 supergravity and its central extension [J]. Nucl Phys Proc Suppl, 1996, 46: 67-74.
[19] Klingen H. Introductory lectures on Siegel modular forms [M]. London: Cambridge University Press, 2008: 2-3, 29-34.
|