[1] Zwolak M P. Dynamics and simulation of open quantum systems . California Institute of Technology, June 2007.
[2] Ferrante A, Pavon M, Raccanelli G. Control of quantum systems using model-based feedback strategies //15th International Symposium on Mathematical Theory of Networks and Systems. Indiana, MA6, 2002: 1-9.
[3] Ferrante A, Pavon M, Raccanelli G. Driving the propagator of a spin system: A feedback approach //Proceedings of the 41th IEEE Conference on Decision and Control. Las Vegas, 2002, 1(11): 46-50.
[4] Hekman K A, Singhose W E. A feedback control system for suppressing crane oscillations with on-off motors [J]. International Journal of Control, Automation, and Systems, 2007, 5(3): 223-233.
[5] Roloff R, Wenin M, Pötz W. Optimal control for open quantum systems: qubits and quantum gates [J]. Journal of Computational and Theoretical Nanoscience, 2009, 6(8): 1837-1863.
[6] Wang Q F. Quantum optimal control of nuclei in the presence of perturbation in electric field [J]. IEEE transactions on Automation Control, 2009, 3(9): 1175-1182.
[7] Mirrahimi M, Rouchon P, Turinici G. Lyapunov control of bilinear Schrödinger equations [J]. Automatica, 2005, 41(11): 1987-1994.
[8] Kuang S, Cong S. Lyapunov control methods of closed quantum systems [J]. Automatica, 2008, 44(1): 98-108.
[9] D'Alessandro D, Dahleh M. Optimal control of two-level quantum systems [J]. IEEE Transactions on Automation Control, 2001, 46(6): 866-876.
[10] Rice S A, Zhao M. Optical control of molecular dynamics [M]. New York:Wiley, 2000.
[11] Shapiro M, Brumer P. Principles of the quantum control of molecular processes [M]. New York:Wiley, 2003.
[12] Kormann K, Holmgren S, Karlsson H O. A fourier-coefficient based solution of an optimal control problem in quantum chemistry . Technical Report, Department of Information Technology, Uppsala University, 2009.
[13] Rabitz H, de Vivie-Riedle R, Motzkus M, et al. Quantum optimally controlled transition landscapes [J]. Science, 2000, 288(5467): 824-828.
[14] Khaneja N, Reiss T, Luy B, et al. Optimal control of spin dynamics in the presence of relaxation [J]. Journal of Magnetic Resonance, 2003, 162:311-319.
[15] Grivopoulos S. Optimal control of quantum systems . ME, University of California at Santa Barbara, 2005.
[16] Yang J, Cong S. Optimal control of open quantum systems based on Liouville superoperator form //System Simulation Technology and Applications. Hefei: University of Science & Technology of China Press, 2008: 837-843 (in Chinese). 杨洁,丛爽.基于Liouville超算符变换的开放量子系统最优控制 //2008年系统仿真技术及应用学术会议论文集.合肥:中国科学技术大学出版社,2008:837-843.
[17] Yang J, Cong S. Performance comparison of two control methods of quantum systems //2009 Chinese Automation Conference. Hangzhou, 2009, T2B: 1-10 (in Chinese). 杨洁,丛爽. 基于量子系统仿真实验的两种控制方法的性能对比研究 //2009中国自动化大会暨两化融合高峰会议论文集.杭州,2009,T2B:1-10.
|