[1] Cramer W, Bondeau A, Woodward F I, et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models[J]. Global Change Biology,2001, 7(4):357-373. [2] Weltzin J F, Bridgham S D, Pastor J, et al. Potential effects of warming and drying on peatland plant community composition[J]. Global Change Biology,2003, 9(2):141-151. [3] Hu Y, Chang X, Lin X, et al. Effects of warming and grazing on N2O fluxes in an alpine meadow ecosystem on the Tibetan plateau[J]. Soil Biology & Biochemistry,2010, 42:944-952. [4] Zhang W, Parker K M, Luo Y, et al. Soil microbial responses to experimental warming and clipping in a tallgrass prairie[J]. Global Change Biology,2005, 11(2):266-277. [5] Butler S M, Melillo J M, Johnson J E, et al. Soil warming alters nitrogen cycling in a New England forest: implications for ecosystem function and structure[J]. Oecologia, 2012, 168(3):819-828. [6] Rinnan R, Stark S, Tolvanen A. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath[J]. Journal of Ecology, 2009, 97(4):788-800. [7] Fierer N, McCain C M, Meir P, et al. Microbes do not follow the elevational diversity patterns of plants and animals[J]. Ecology, 2011, 92(4):797-804. [8] Liu Z, Fu B, Zheng X, et al. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study[J]. Soil Biology & Biochemistry,2010, 42(3):445-450. [9] Sundqvist M K, Giesler R, Graae B J, et al. Interactive effects of vegetation type and elevation on aboveground and belowground properties in a subarctic tundra[J]. Oikos, 2011, 120(1):128-142. [10] Dunne J A, Saleska S R, Fischer M L, et al. Integrating experimental and gradient methods in ecological climate change research[J]. Ecology, 2004, 85(4):904-916. [11] Hu Q W, Cao G M, Wu Q, et al. Comparative study on CO2 emissions from different types of alpine meadows during grass exuberance period[J]. Journal of Geographical Sciences,2004, 14(2):167-176. [12] Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology, 1991, 57(8):2351-2359. [13] Preston-Mafham J, Boddy L, Randerson P F. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles-a critique[J]. FEMS Microbiology Ecology,2002, 42(1):1-14. [14] Kaufmann K, Christophersen M, Buttler A, et al. Microbial community response to petroleum hydrocarbon contamination in the unsaturated zone at the experimental field site Vœrlψse, Denmark[J]. FEMS Microbiology Ecology, 2004, 48(3):387-399. [15] Bryant J A, Lamanna C, Morlon H, et al. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity[J]. PNAS, 2008, 105:11505. [16] Singh D, Takahashi K, Kim M, et al. A Hump-backed trend in bacterial diversity with elevation on mount Fuji, Japan[J]. Microbial Ecology, 2012, 63(2):429-437. [17] Körner C. The use of 'altitude’ in ecological research[J]. Trends in Ecology & Evolution, 2007, 22(11):569-574. [18] Rowe R J, Lidgard S. Elevational gradients and species richness: do methods change pattern perception[J]? Global Ecology and Biogeography, 2009, 18(2):163-177. [19] Baudoin E, Benizri E, Guckert A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere[J]. Soil Biology & Biochemistry,2003, 35(9):1183-1192. [20] Wu Y, Tan H, Deng Y, et al. Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai-Tibetan Plateau revealed by field 13C pulse-labeling[J]. Global Change Biology,2010, 16(8):2322-2333. [21] Jackson R B, Canadell J, Ehleringer J R, et al. A global analysis of root distributions for terrestrial biomes[J]. Oecologia,1996, 108(3):389-411. [22] Hirota M, Zhang P, Gu S, et al. Altitudinal variation of ecosystem CO2 fluxes in an alpine grassland from 3600 to 4200 m[J]. Journal of Plant Ecology, 2009, 2(4):197-205. [23] Schindlbacher A, Rodler A, Kuffner M, et al. Experimental warming effects on the microbial community of a temperate mountain forest soil[J]. Soil Biology & Biochemistry,2011, 43(7):1417-1425. [24] Zhou J Z, Xue K, Xie J P, et al. Microbial mediation of carbon-cycle feedbacks to climate warming[J]. Nature Climate Change, 2012, 2(2):106-110. [25] Sowerby A, Emmett B, Beier C, et al. Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations[J]. Soil Biology & Biochemistry,2005, 37(10):1805-1813. [26] Blankinship J C, Niklaus P A, Hungate B A. A meta-analysis of responses of soil biota to global change[J]. Oecologia, 2011, 165(3):553-565. [27] Ma X, Chen T, Zhang G, et al. Microbial community structure along an altitude gradient in three different localities[J]. Folia Microbiologica,2004, 49(2):105-111. [28] Chen M M, Zhu Y G, Su Y H, et al. Effects of soil moisture and plant interactions on the soil microbial community structure[J]. European Journal of Soil Biology, 2006, 43(2007):31-38. [29] Williams M A, Rice C W. Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community[J]. Applied Soil Ecology,2007, 35(3):535-545. [30] Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities[J]. PNAS,2006, 103(3):626-631. [31] Wardle D A, Walker L R, Bardgett R D. Ecosystem properties and forest decline in contrasting long-term chronosequences[J]. Science, 2004, 305(5683):509-513. [32] Chapin III F S. Effects of multiple environmental stresses on nutrient availability and use. In: Response of plants to multiple stresses[M]. San Diego: Academic Press, 1991:67-88. [33] Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letter,2007, 10(12):1135-1142. [34] [ZK(]Cao G M, Zhang J X, Bao X K, et al. The phosphorus cycling in an alpine meadow ecosystem[J]. Acta Ecologica Sinica, 1999, 19(4):514-518(in Chinese).曹广民,张金霞,鲍新奎,等. 高寒草甸生态系统磷素循环[J]. 生态学报, 1999, 19(4):514-518.[ZK)] [35] Sundareshwar P, Morris J, Koepfler E, et al. Phosphorus limitation of coastal ecosystem processes[J]. Science, 2003, 299(5606):563-565. [36] Cleveland C C, Townsend A R, Schmidt S K. Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies[J]. Ecosystems, 2002, 5(7):680-691. |