[1] Banin U, Cao Y W, Katz D, et al. Identification of atomic-like electronic state in indium arsenide nanocrystal quantum dots. Nature, 1999, 400:542 ~ 544[2] Facako S, Dekorsy T, Koerdt C, et al. Formation of ordered nanoscale semiconductor dots by sputtering. Science, 1999, 285:1551~ 1553[3] Springholz G, Holy V, Pincaolits M, et al. Self-organized growth of three-dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant. Science, 1998, 282:734 ~ 737[4] Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater, 2000, 48:1 ~ 29[5] Ueta A, Avramescu A, Suemune I, et al. Nucleation and faceting in selectively grown ZnS pyramidal dot array for short-wavelength light emitters. Jpn J Appl Phys Part 2, 1999, 38(7A): L710 ~ L713[6] Fafard S, Wasilewski Z R, Allen C Ni, et al Manipulating the energy levels of semiconductor quantum dots. Phys Rev B, 1999, 59(23): 15368 ~ 15373[7] Nakajima A, Sugita Y, Kawamura K, et al. Si quantum dot formation with low-pressure chemical vapor deposition. Jpn J Appl Phys Part 2, 1996, 35(2B): L189 ~ L191[8] Murray C B, Kagan C R, Bawendi M G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science, 1995, 270:1335 ~ 1338[9] Martin C R. Nanomaterials: a membrane-based synthetic approach. Science, 1994, 266:1961 ~ 1966[10] Huczko A. Template-based synthesis of nanomaterials. Appl Phys A, 2000, 70:365 ~ 376[11] Masuda H, Satoh M Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J Appl Phys Part 2, 1996, 35(1B): L126 ~ L129[12] Masuda H, Yasui K, Nishio K. Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as an evaporation mask. Adv Mater, 2000, 12(14): 1031 ~ 1033[13] Diggle J W, Downie T C, Goulding C W. Anodic oxide films on aluminum. Chem Rev, 1969, 69:365 ~ 405[14] Li A P, Müller F, Birner A, et al. Hexagonal pore arrays with a 50~420 nm interpore distance formed by self-organization in anodic alumina. J Appl Phys, 1998, 84(11): 6023 ~ 6026[15] Masuda H, Yamada H, Satoh M, et al. Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett, 1997,71(19): 2770 ~ 2772[16] Zhang Lide, Meng Guowen, Phillipp F. Preparation of nanowires and microarrays. Chin Phys, 2001, 10(Suppl. ): S117 ~ S123[17] Gao T, Fan J C, Meng G W, et al. Thin Au film with highly ordered arrays of hemispherical dots. Thin Solid Films, 2001, 401(1-2): 102 ~ 105[18] 吴广明,王珏,汤学峰,等.锡薄膜等温氧化研究.物理学报,2000,49(5):1015~1018[19] Zhang Z, Gekhtman D, Dresselhaus M S, et al. Processing and characterization of single-crystalline ultrafine bismuth nanowires.Chem Mater, 1999, 11:1659 ~ 1665[20] Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina.Science, 1995, 268: 1466~ 1468[21] Zubia D, Hersee S D. Nanoheteroepitaxy: the application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials. J Appl Phys, 1999, 85(9): 6492 ~ 6496[22] Hadobas K, Kirsch S, Carl A, et al. Reflection properties of nanostructure-arrayed silicon surface. Nanotechnology, 2000, 11: 161~ 164[23] Wu C, Crouch C H, Zhao L, et al. Near-unity below-band-gap absorption by microstructured silicon. Appl Phys Lett, 2001, 78(13): 1850 ~ 1852[24] Aggarwal S, Ogale S B, Ganpule C S, et al. Oxide nanostructures through self-assembly. Appl Phys Lett, 2001, 78(10): 1442 ~1444 |