[1] Maroo S C, Chung J N. A novel fluid-wall heat transfer model for molecular dynamics simulations[J]. Journal of Nanoparticle Research, 2010,12 (5): 1 913-1 924.[2] Chen J, Liu C, Liu F, et al. Investigation of solid wall heating by molecular dynamic simulation[J]. Journal of Engineering Thermophysics, 2007, 28(1): 9-11.[3] Kim B H, Beskok A, Cagin T. Thermal interactions in nanoscale fluid flow: molecular dynamics simulations with solid-liquid interfaces[J]. Microfluid Nanofluidics, 2008, 5(4):551-559.[4] Kamali R , Kharazmi A. Molecular dynamics simulation of surface roughness effects on nanoscale flows[J]. International Journal of Thermal Sciences, 2011,50(3): 226-232.[5] Kharea R, Keblinskib P, Yethirajc A. Molecular dynamics simulations of heat and momentum transfer at a solid-fluid interface: Relationship between thermal and velocity slip[J]. International Journal of Heat and Mass Transfer,2006, 49(19/20):3 401-3 407.[6] Nagayamaa G, Cheng P. Effects of interface wettability on microscale flow by molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer, 2004, 47(3): 501-513.[7] Xu J, Li Y. Boundary conditions at the solid-liquid surface over the multiscale channel size from nanometer to micron[J]. International Journal of Heat and Mass Transfer,2007, 50(13/14):2 571-2 581.[8] Yin C Y, Mohamad E H. Simulation of liquid argon flow along a nanochannel: effect of applied force[J]. Fluid Flow and Transport Phenomena Chinese Journal of Chemical Engineering, 2009,17(5): 734-738.[9] Priezjev N V. Rate-dependent slip boundary conditions for simple fluids[J]. Physical Review E, 2007,75: 051 605.[10] Yang S. Effects of surface roughness and interface wettability on nanoscale flow in a nanochannel[J]. Microfluidics and Nanofluidics, 2006, 2(6):501-511.[11] Ziarani A S, Mohamad A A. Effect of wall roughness on the slip of fluid in a microchannel[J]. Nanoscale and Microscale Thermophysical Engineering, 2008,12(2): 154-169.[12] Maruyama S, Kimura T. A study on thermal resistance over a solid-liquid interface by the molecular dynamics method[J]. Thermal Science and Engineering, 1999,7(1):63-68.[13] Maroo S C, Chung J N. Molecular dynamic simulation of platinum heater and associated nanoscale liquid argon film evaporation and colloidal adsorption characteristics[J]. Journal of Colloid and Interface Science, 2008,328(1): 134-146.[14] Li Q b, Liu C. Molecular dynamics simulation of heat transfer with effects of fluid-lattice interactions[J]. International Journal of Heat and Mass Transfer,2012,55(25/26): 8 088-8 092.[15] Barisik M, Beskok A. Boundary treatment effects on molecular dynamics simulations of interface thermal resistance[J]. Journal of Computational Physics, 2012, 231(23): 7 881-7 892.[16] Barisik M, Beskok A. Temperature dependence of thermal resistance at the water/silicon interface[J]. International Journal of Thermal Sciences,2014,77:47-54.[17] Hoyt J J, Garvin J W, Webb III E B, et al. An embedded atom method interatomic potential for the Cu-Pb system[J]. Modelling and Simulation in Materials Science and Engineering, 2003,11(3):287-299.[18] Belashchenko D K,Kravchunovskaya N E,Ostrovski O,Molecular dynamics calculation of surface tension of liquid metals using the embedded atom model[J]. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2010, 34: 45-50.[19] Shi Z Y, Barisik M, Beskok A. Molecular dynamics modeling of thermal resistance at argon-graphite and argon-silver interfaces[J]. International Journal of Thermal Sciences, 2012,59:29-37.[20] Turan O, Poole R J, Chakraborty N. Influences of boundary conditions on laminar natural convection in rectangular enclosures with differentially heated side walls[J]. International Journal of Heat and Fluid Flow, 2012,33:131-146. |