[1] Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Physical Review Letters, 1993, 70(13): 1 895-1 899.
[2] Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states [J]. Physical Review Letters, 1992, 69(20): 2 881-2 884.
[3] Mattle K, Weinfurter H, Kwiat P G. Dense coding in experimental quantum communication [J]. Physical Review Letters, 1996, 76(25): 4 656-4 659.
[4] Ekert A K. Quantum cryptography based on Bell's theorem [J]. Physical Review Letters, 1991, 67(6): 661-663.
[5] Dür W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalent ways [J]. Physical Review A, 2000, 62(6): 062314.
[6] Bastin T, Krins S, Mathonet P, et al. Operational families of entanglement classes for symmetric N-qubit states [J]. Physical Review Letters, 2009, 103(7): 070503.
[7] Verstraete F, Dehaene J, De Moor B, et al. Four qubits can be entangled in nine different ways [J]. Physical Review A, 2002, 65(5): 052112.
[8] Osterloh A, Siewert J. Constructing N-qubit entanglement monotones from antilinear operators [J]. Physical Review A, 2005, 72(1): 012337.
[9] Osterloh A, Siewert J. Entanglement monotones and maximally entangled states in multipartite qubit systems [J]. International Journal of Quantum Information, 2006, 4(3): 531-540.
[10] Li X R, Li D F. Classification of general n-qubit states under stochastic local operations and classical communication in terms of the rank of coefficient matrix [J]. Physical Review Letters, 2012, 108(18): 180502.
[11] Li X R, Li D F. Method for classifying multiqubit states via the rank of the coefficient matrix and its application to four-qubit states [J]. Physical Review A, 2012, 86(4): 042332.
[12] Wang S H, Lu Y, Gao M, et al. Classification of arbitrary-dimensional multipartite pure states under stochastic local operations and classical communication using the rank of coefficient matrix [J]. Journal of Physics A: Mathematical and Theoretical, 2013, 46(10): 105303.
[13] Wang S H, Lu Y, Long G L. Entanglement classification of 2×2×2×d quantum systems via the ranks of the multiple coefficient matrices [J]. Physical Review A, 2013, 87(6): 062305.
[14] Sun L L, Li J L, Qiao C F. Classification of the entangled states of 2×L×M×N [J]. Quantum Information Processing, 2015, 14(1): 229-245.
[15] Cheng S, Li J L, Qiao C F. Classification of the entangled states of 2×N×N [J]. Journal of Physics A: Mathematical and Theoretical, 2010, 43(5): 055303.
[16] Li J L, Qiao C F. Classification of the entangled states 2×M×N [J]. Quantum Information Processing, 2013, 12(1): 251-268.
[17] Li X K, Li J L, Liu B, et al. The parametric symmetry and numbers of the entangled class of 2×M×N system [J]. Science China Physics, Mechanics and Astronomy, 2011, 54(8): 1 471-1 475.
[18] Li J L, Li S Y, Qiao C F. Classification of the entangled states L×N×N [J]. Physical Review A, 2012, 85(1): 012301.
[19] Zhang T G, Zhao M J, Li M, et al. Criterion of local unitary equivalence for multipartite states [J]. Physical Review A, 2013, 88(4): 042304.
[20] Van Loan C F. The ubiquitous Kronecker product [J]. Journal of Computational and Applied Mathematics, 2000, 123(1/2): 85-100.
[21] Horn R A, Johnson C R. Topics in Matrix Analysis [M]. Cambridge: Cambridge University Press, 1991.
[22] Chen K, Wu L A. A matrix realignment method for recognizing entanglement [J]. Quantum Information and Computation, 2003, 3(3): 193-202. |