[1] Cao L, Mees A, Judd K. Dynamics from multivariate time series[J]. Physica D Nonlinear Phenomena, 1998, 121(1):75-88.
[2] Jamshidi A A, Kirby M J. Modeling multivariate time series on manifolds with skew radial basis functions[J]. Neural Computation, 2011, 23(1):97-123.
[3] Islam F, Shahbaz M, Ahmed A U, et al. Financial development and energy consumption nexus in Malaysia:a multivariate time series analysis[J]. Economic Modelling, 2013, 30(1):435-441.
[4] 陈晓云,吴本昌,韩海涛.基于多维时间序列挖掘的降雨天气模型研究[J].计算机工程与设计, 2010, 31(4):898-902.
[5] Bueno L, Costa P, Mendes I, et al. Evolving ensemble of fuzzy models for multivariate time series prediction[C]//Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on. IEEE, 2015:1-6.
[6] Zhang X L, Begleiter H, Porjesz B, et al. Event related potentials during object recognition tasks[J]. Brain Research Bulletin, 1995, 38(6):531-538.
[7] Jones S S, Evans R S, Allen T L, et al. A multivariate time series approach to modeling and forecasting demand in the emergency department[J]. Journal of Biomedical Informatics, 2009, 42(1):123-139.
[8] Wang H R, Wang C, Lin X, et al. An improved ARIMA model for hydrological simulations[J]. Nonlinear Processes in Geophysics Discussions, 2014, 1(1):841-876.
[9] 黄雁勇,王沁,李裕奇.ARMA模型参数估计算法的改进[J]. 统计与决策, 2009(16):7-9.
[10] Han M, Fan M. Multivariate time series prediction by neural network combining SVD[C]//Systems, Man and Cybernetics, 2006. SMC'06. IEEE International Conference on. IEEE, 2006:3884-3889.
[11] Han M, Wang X. Multi reservoir support vector echo state machine for multivariate time series prediction[C]//Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics. IEEE Computer Society, 2013:983-987.
[12] Fu T C. A review on time series data mining[J]. Engineering Applications of Artificial Intelligence, 2011, 24(1):164-181.
[13] Han M, Fan M, Xi J. Study of nonlinear multivariate time series prediction based on neural networks[C]//Advances in Neural Networks-ISNN 2005. Springer Berlin Heidelberg, 2005:618-623.
[14] Cai Y, Wang H, Ye X, et al. Multivariate Time Series Prediction Based on Multi-Output Support Vector Regression[C]//The Seventh International Conference on Intelligent System and Knowledge Engineering, ISKE 2012/The 1st International Conference on Cognitive System and Information Processing, CSIP 2012.2012:385-395.
[15] Xi J H, Wang H D, Jiang L Y. Multivariate time series prediction based on a simple RBF network[J]. Advanced Materials Research, 2012, 566:97-102.
[16] 曹新莉,王树朋.基于多维时间序列和BP神经网络的短期风电功率预测[J].陕西电力,2014, 42(4):19-23.
[17] 韩敏,许美玲,王新迎.多元时间序列的子空间回声状态网络预测模型[J].计算机学报, 2014, 37(11):2268-2275.
[18] 陈飞彦,田宇驰,胡亮.物联网中基于KNN和BP神经网络预测模型的研究[J].计算机应用与软件, 2015(6):127-129.
[19] 郑为中,史其信.基于贝叶斯组合模型的短期交通量预测研究[J].中国公路学报, 2005, 18(1):85-89.
[20] 秦大建,李志蜀.基于神经网络的时间序列组合预测模型研究及应用[J].计算机应用, 2006, 26(B06):129-131.
[21] 周芳.基于KNN-ANN算法的边际电价预测[J]. 计算机工程, 2010, 36(11):188-189.
[22] Huang Z, Shyu M L. k-NN based LS-SVM framework for long-term time series prediction[C]//Information Reuse and Integration (IRI), 2010 IEEE International Conference on. IEEE, 2010:69-74.
[23] Wei C C, Chen T T, Lee S J. k-NN based neuro-fuzzy system for time series prediction[C]//201314th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). IEEE Computer Society, 2013:569-574. |