[1] Dreaden E C, Alkilany A M, Huang X H, et al. The golden age:gold nanoparticles for biomedicine[J]. Chem Soc Rev, 2012, 41(7):2740-2779.
[2] Murphy C J, San T K, Gole A M, et al. Anisotropic metal nanoparticles:synthesis, assembly, and optical applications[J]. J Phys Chem B, 2005, 109(29):13857-13870.
[3] Xiao J Y, Qi L M. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals[J]. Nanoscale, 2011, 3(4):1383-1396.
[4] Smith R K, Lewis P A, Weiss P S. Patterning self-assembled monolayers[J]. Prog Surf Sci, 2004, 75(1/2):1-68.
[5] Daniel M C, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chem Rev, 2004, 104(1):293-346.
[6] Ye X C, Gao Y Z, Chen J, et al. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures[J]. Nano Lett, 2013, 13(5):2163-2171.
[7] Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Adv Mater, 2001, 13(18):1389-1393.
[8] Johnson C J, Dujardin E, Davis S A, et al. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis[J]. J Mater Chem, 2002, 12(6):1765-1770.
[9] Murphy C J, Thompson L B, Alkilany A M, et al. The many faces of gold nanorods[J]. J Phys Chem Lett, 2010, 1(19):2867-2875.
[10] Nikoobakht B, El-Sayed M A. Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods[J]. Langmuir, 2001, 17(20):6368-6374.
[11] Gao J X, Bender C M, Murphy C J. Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution[J]. Langmuir, 2003, 19(21):9065-9070.
[12] Sardar R, Funston A M, Mulvaney P, et al. Gold nanoparticles:past, present, and future[J]. Langmuir, 2009, 25(24):13840-13851.
[13] Wang Z L, Mohamed M B, Link S, et al. Crystallographic facets and shapes of gold nanorods of different aspect ratios[J]. Surf Sci, 1999, 440(1/2):L809-L814.
[14] Nakahara H, Shibata O, Moroi Y. Examination of surface adsorption of cetyltrimethylammonium bromide and sodium dodecyl sulfate[J]. J Phys Chem B, 2011, 115(29):9077-9086.
[15] Alkilany A M, Nagaria P K, Hexel C R, et al. Cellular uptake and cytotoxicity of gold nanorods:molecular origin of cytotoxicity and surface effects[J]. Small, 2009, 5(6):701-708.
[16] Perez-Juste J, Liz-Marzan L M, Carnie S, et al. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions[J]. Adv Funct Mater, 2004, 14(6):571-579.
[17] Alkilany A M, Thompson L B, Boulos S P, et al. Gold nanorods:their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions[J]. Adv Drug Deliver Rev, 2012, 64(2):190-199.
[18] Khan Z, Singh T, Hussain J I, et al. Au(Ⅲ)-CTAB reduction by ascorbic acid:preparation and characterization of gold nanoparticles[J]. Colloid Surface B, 2013, 104:11-17.
[19] Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires[J]. Adv Mater, 2002, 14(1):80-82.
[20] Hu W X, Wiria, Ong W L, et al. High yield shape control of monodispersed Au nanostructures with 3D self-assembly ordering[J]. Colloid Surface A, 2010, 358(1/3):108-114.
[21] Mlambo M, Mdluli P S, Shumbula P, et al. Synthesis and characterization of mixed monolayer protected gold nanorods and their Raman activities[J]. Mater Res Bull, 2013, 48(10):4181-4185.
[22] Merrill N A, Sethi M, Knecht M R. Structural and equilibrium effects of the surface passivant on the stability of Au nanorods[J]. Acs Appl Mater Inter, 2013, 5(16):7906-7914.
[23] Gole A, Murphy C J. Seed-mediated synthesis of gold nanorods:role of the size and nature of the seed[J]. Chem Mater, 2004, 16(19):3633-3640.
[24] Link S, Mohamed M B, El-Sayed M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant[J]. J Phys Chem B, 1999, 103(16):3073-3077.
[25] Connor E E, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity[J]. Small, 2005, 1(3):325-327.
[26] Qiu Y, Liu Y, Wang L M, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods[J]. Biomaterials, 2010, 31(30):7606-7619.
[27] Cortesi R, Esposito E, Menegatti E, et al. Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA[J]. Int J Pharm, 1996, 139(1/2):69-78.
[28] Mirska D, Schirmer K, Funari S S, et al. Biophysical and biochemical properties of a binary lipid mixture for DNA transfection[J]. Colloid Surface B, 2005, 40(1):51-59.
[29] Takahashi H, Niidome Y, Niidome T, et al. Modification of gold nanorods using phospatidylcholine to reduce cytotoxicity[J]. Langmuir, 2006, 22(1):2-5.
[30] Sreeprasad T S, Samal A K, Pradeep T. One-, two-, and three-dimensional superstructures of gold nanorods induced by dimercaptosuccinic acid[J]. Langmuir, 2008, 24(9):4589-4599.
[31] Zhong L B, Zhou X, Bao S X, et al. Rational design and SERS properties of side-by-side, end-to-end and end-to-side assemblies of Au nanorods[J]. J Mater Chem, 2011, 21(38):14448-14455.
[32] Gomez-Grana S, Hubert F, Testard F, et al. Surfactant (Bi) layers on gold nanorods[J]. Langmuir, 2012, 28(2):1453-1459.
[33] Weidemaier K, Tavernier H L, Fayer M D. Photoinduced electron transfer on the surfaces of micelles[J]. J Phys Chem B, 1997, 101(45):9352-9361.
[34] Henkel A, Schubert O, Plech A, et al. Growth Kinetic of a Rod-Shaped Metal Nanocrystal[J]. J Phys Chem C, 2009, 113(24):10390-10394.
[35] Bakshi M S, Kaur G, Thakur P, et al. Surfactant selective synthesis of gold nanowires by using a DPPC-surfactant mixture as a capping agent at ambient conditions[J]. J Phys Chem C, 2007, 111(16):5932-5940.
[36] Meena S K, Sulpizi M. Understanding the microscopic origin of gold nanoparticle anisotropic growth from molecular dynamics simulations[J]. Langmuir, 2013, 29(48):14954-14961.
[37] Yuan S L, Ma L X, Zhang X Q, et al. Molecular dynamics studies on monolayer of cetyltrimethylammonium bromide surfactant formed at the air/water interface[J]. Colloid Surface A, 2006, 289(1/3):1-9.
[38] Wandlowski T, Wang J X, Magnussen O M, et al. Structural and kinetic aspects of bromide adsorption on Au(100)[J]. J Phys Chem-Us, 1996, 100(24):10277-10287.
[39] Magnussen O M, Ocko B M, Wang J X, et al. In-situ X-ray diffraction and STM studies of bromide adsorption on Au(111) electrodes[J]. J Phys Chem-Us, 1996, 100(13):5500-5508.
[40] Heinz H, Vaia R A, Farmer B L, et al. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12-6 and 9-6 Lennard-Jones potentials[J]. J Phys Chem C, 2008, 112(44):17281-17290.
[41] Feng J, Pandey R B, Berry R J, et al. Adsorption mechanism of single amino acid and surfactant molecules to Au {111} surfaces in aqueous solution:design rules for metal-binding molecules[J]. Soft Matter, 2011, 7(5):2113-2120.
[42] Wang L M, Li J Y, Pan J, et al. Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques:understanding the reduced damage in cell membranes[J]. J Am Chem Soc, 2013, 135(46):17359-17368.
[43] Lybrand T P, Ghosh I, Mccammon J A. Hydration of chloride and bromide anions-determination of relative free-energy by computer-simulation[J]. J Am Chem Soc, 1985, 107(25):7793-7794.
[44] Thomas A S, Elcock A H. Molecular dynamics simulations of hydrophobic associations in aqueous salt solutions indicate a connection between water hydrogen bonding and the Hofmeister effect[J]. J Am Chem Soc, 2007, 129(48):14887-14898.
[45] Ferrer-Tasies L, Moreno-Calvo E, Cano-Sarabia M, et al. Quatsomes:vesicles formed by self-assembly of sterols and quaternary ammonium surfactants[J]. Langmuir, 2013, 29(22):6519-6528.
[46] Mackerell A D, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins[J]. J Phys Chem B, 1998, 102(18):3586-3616.
[47] Mackerell A D, Feig M, Brooks C L. Extending the treatment of backbone energetics in protein force fields:limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations[J]. J Comput Chem, 2004, 25(11):1400-1415.
[48] Darden T, York D, Pedersen L. Particle mesh Ewald:an NlogN method for Ewald sums in large systems[J]. J Chem Phys, 1993, 98(12):10089-10092.
[49] Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD[J]. J Comput Chem, 2005, 26(16):1781-1802.
[50] Humphrey W, Dalke A, Schulten K. VMD:visual molecular dynamics[J]. J Mol Graph Model, 1996, 14(1):33-38.
[51] Alkilany A M, Frey R L, Ferry J L, et al. Gold nanorods as nanoadmicelles:1-naphthol partitioning into a nanorod-bound surfactant bilayer[J]. Langmuir, 2008, 24(18):10235-10239.
[52] Bockmann R A, Hac A, Heimburg T, et al. Effect of sodium chloride on a lipid bilayer[J]. Biophys J, 2003, 85(3):1647-1655.
[53] Xia Y N, Xiong Y J, Lim B, et al. Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics?[J]. Angew Chem Int Edit, 2009, 48(1):60-103. |