[1] Lawen A, Traber R, Geyl D, et al. Cell-free biosynthesis of new cyclosporins[J]. The Journal of Antibiotics, 1989, 42(8):1283-1289.
[2] Borel J F. Comparative study of in vitro and in vivo drug effects on cell-mediated cytotoxicity[J]. Immunology, 1976, 31(4):631-641.
[3] Scribner A, Houck D, Huang Z, et al. Synthesis and biological evaluation of 8 cyclosporin A analogs as potential anti-HCV agents[J]. Bioorganic & Medicinal Chemistry Letters, 2010, 20(22):6542-6546.
[4] Peel M, Scribner A. Cyclophilin inhibitors as antiviral agents[J]. Bioorganic & Medicinal Chemistry Letters, 2013, 23(16):4485-4492.
[5] Evers M, Barrière J C, Bashiardes G, et al. Synthesis of non-immunosuppressive cyclophilin-Binding cyclosporin A derivatives as potential anti-HIV-1 drugs[J]. Bioorganic & Medicinal Chemistry Letters, 2003, 13(24):4415-4419.
[6] Kim S-N, Ahn H-J, Lee C-W, et al. Use of nonimmunosuppressive cyclosporin derivatives for treating hair loss:US, US20040161399. (2004-08-19). http://www.freepatentsonline.com/y2004/0161399.html.
[7] Kim C D, Lee M H, Sohn K C, et al. Induction of synapse associated protein 102 expression in cyclosporin A-stimulated hair growth[J]. Experimental Dermatology, 2008, 17(8):693-699.
[8] Lee M J, Kim H B, Yoon Y J, et al. Identification of a cyclosporine-specific P450 hydroxylase gene through targeted cytochrome P450 complement (CYPome) disruption in Sebekia benihana[J]. Applied and environmental microbiology, 2013, 79(7):2253-2262.
[9] Takahashi T, Kamimura A. Cyclosporin A promotes hair epithelial cell proliferation and modulates protein kinase C expression and translocation in hair epithelial cells[J]. Journal of Investigative Dermatology, 2001, 117(3):605-611.
[10] Bistolas N, Wollenberger U, Jung C, et al. Cytochrome P450 biosensors:a review[J]. Biosensors & Bioelectronics, 2005, 20(12):2408-2423.
[11] Kuhnt M, Bitsch F, France J, et al. Microbial biotransformation products of cyclosporin A[J]. The Journal of Antibiotics, 1996, 49(8):781-787.
[12] Lee M J, Han K, Kim E S. Targeted gene disruption and functional complementation of cytochrome P450 hydroyxlase involved in cyclosporin A hydroxylation in Sebekia benihana [J]. J Microbiol Biotechnol, 2011, 21(1):14-19.
[13] Park N S, Myeong J S, Park H J, et al. Characterization and culture optimization of regiospecific cyclosporin hydroxylation in rare actinomycetes species[J]. Journal of Microbiology & Biotechnology, 2005, 15(1):188-191.
[14] 章丽, 戴梦, 郑桂珍, 等. 等离子体-紫外复合诱变选育四羟基环孢菌素衍生物高产菌株[J]. 微生物学杂志, 2014, 34(1):68-71.
[15] 刘静, 戴梦, 章丽, 等. 4-羟基环孢菌素A衍生物-CyA生产菌的接合转移[J]. 化学与生物工程, 2013, 30(4):44-46.
[16] Stackebrandt E, Wink J, Steiner U, et al. Nonomuraea dietzii sp. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(4):1437-1441.
[17] Sebek O K, Dolak L A. Microbial hydroxylation of novobiocin and related compounds[J]. The Journal of Antibiotics, 1984, 37(2):136-142.
[18] 黄乐平, 汤锋, 刘启阳, 等. 紫外-氯化锂复合诱变选育聚半乳糖醛酸酶高产菌株[J]. 安徽农业科学, 2011, 39(22):13275-13276.
[19] 袁琳. 采用氯化锂和紫外线复合诱变方法筛选四环素高产菌株[J]. 宁夏医学杂志, 2000, 22(6):340-341.
[20] 虞龙, 张宇, 龚文静, 等. 氯化锂-紫外-离子束复合诱变红霉素高产菌株研究[J]. 原子能科学技术, 2011, 45(7):780-784.
[21] Wang P, Hongbing Y U, Wang L, et al. Production of levulinic acid from sucrose catalyzed by ferric chloride supported on activated carbon[J]. Chemical Industry & Engineering Progress, 2009, 28(5):817-821.
[22] Ahmadi M, Vahabzadeh F, Bonakdarpour B, et al. Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton's peroxidation[J]. Journal of Hazardous Materials, 2005, 123(1):187-195.
[23] 高宏伟, 张萍, 石彦鹏, 等. 紫外-氯化锂复合诱变选育泰妙菌素高产菌株[J]. 中国兽药杂志, 2011, 45(3):18-19.
[24] 邱雁临, 梁亮, 汪亮. 紫外线与氯化锂复合诱变选育L-组氨酸产生菌[J]. 现代食品科技, 2008, 24(3):217-219.
[25] 章丽, 戴梦, 郑桂珍, 等. 四羟基环孢菌素衍生物转化菌株发酵条件优化[J]. 中国抗生素杂志, 2014, 39(4):249-252.
[26] Gunnarsson N, Mortensen U H, Sosio M, et al. Identification of the Entner-Doudoroff pathway in an antibiotic-producing actinomycete species[J]. Molecular Microbiology, 2004, 52(3):895-902.
[27] Conway T. The Entner-Doudoroff pathway:history, physiology and molecular biology[J]. FEMS Microbiology Reviews, 1992, 9(1):1-27.
[28] Hamedi J, Malekzadeh F,Niknam V. Improved production of erythromycin by Saccharopolyspora erythraea by various plant oils[J]. Biotechnology Letters, 2002, 24(9):697-700.
[29] Qi H, Zhao S, Fu H, et al. Enhancement of ascomycin production in Streptomyces hygroscopicus var. ascomyceticus by combining resin HP20 addition and metabolic profiling analysis[J]. Journal of Industrial Microbiology and Biotechnology, 2014, 41(9):1365-1374.
[30] Zhao S, Huang D, Qi H, et al. Comparative metabolic profiling-based improvement of rapamycin production by Streptomyces hygroscopicus[J]. Applied Microbiology and Biotechnology, 2013, 97(12):5329-5341.
[31] Xia M, Huang D, Li S, et al. Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis[J]. Biotechnology and Bioengineering, 2013, 110(10):2717-2730. |