[1] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782.
[2] Fan C Z, Gao Y, Huang J P. Shaped graded materials with an apparent negative thermal conductivity[J]. Appl Phys Lett, 2008, 92(25):251907.
[3] Guenneau S, Amra C. Anisotropic conductivity rotates heat fluxes in transient regimes[J]. Opt Express, 2013, 21(5):6578-6583.
[4] Schittny R, Kadic M, Guenneau S, et al. Experiments on transformation thermodynamics:molding the flow of heat[J]. Phys Rev Lett, 2013, 110(19):195901.
[5] Narayana S, Savo S, Sato Y. Transient heat flux shielding using thermal metamaterials[J]. Appl Phys Lett, 2013, 102(20):201904.
[6] Han T, Bai X, Gao D, et al. Experimental demonstration of a bilayer thermal cloak[J]. Phys Rev Lett, 2014, 112(5):054302.
[7] Wu L. Cylindrical thermal cloak based on the path design of heat flux[J]. J Heat Trans, 2015, 137(2):021301.
[8] Xu H, Shi X, Gao F, et al. Ultrathin three-dimensional thermal cloak[J]. Phys Rev Lett, 2014, 112(5):054301.
[9] 毛福春, 李廷华, 黄铭, 等. 任意横截面柱形热斗篷研究与设计[J]. 物理学报, 2014, 63(1):14401.
[10] Vemuri K P, Bandaru P R. Geometrical considerations in the control and manipulation of conductive heat flux in multilayered thermal metamaterials[J]. Appl Phys Lett, 2013, 103(13):133111.
[11] Yang T, Vemuri K P, Bandaru P R. Experimental evidence for the bending of heat flux in a thermal metamaterial[J]. Appl Phys Lett, 2014, 105(8):083908.
[12] Canbazoglu F M, Vemuri K P, Bandaru P R. Estimating interfacial thermal conductivity in metamaterials through heat flux mapping[J]. Appl Phys Lett, 2015, 106(14):143904. |