[1] Wang R W, Jin C, Zhu X Y, et al. Artificial base zT as functional "element" for constructing photoresponsive DNA nanomolecules[J]. Journal of the American Chemical Society, 2017, 139(27):9104-9107.
[2] Gorbea C, Mosbruger T, Cazalla D. A viral Sm-class RNA base-pairs with mRNAs and recruits microRNAs to inhibit apoptosis[J]. Nature, 2017, 550(7675):275-279.
[3] Gomez-Santacana X, Pittolo S, Rovira X, et al. Illuminating phenylazopyridines to photoswitch metabotropic glutamate receptors:from the flask to the animals[J]. ACS Central Science, 2017, 3(1):81-91.
[4] Adedeji A O, Singh K, Calcaterra N E, et al. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase[J]. Antimicrobial Agents and Chemotherapy, 2012, 56(9):4718-4728.
[5] Velema W A, Szymanski W, Feringa B L. Photopharmacology:beyond proof of principle[J]. Journal of the American Chemical Society, 2014, 136(6):2178-2191.
[6] Wu L, Pei F, Zhang J H, et al. Synthesis of site-specifically phosphate-caged siRNAs and evaluation of their RNAi activity and stability[J]. Chemistry-A European Journal, 2014, 20(38):12114-12122.
[7] Hemphill J, Govan J, Uprety R, et al. Site-specific promoter caging enables optochemical gene activation in cells and animals[J]. Journal of the American Chemical Society, 2014, 136(19):7152-7158.
[8] Wu L, Wang Y, Wu J Z, et al. Caged circular antisense oligonucleotides for photomodulation of RNA digestion and gene expression in cells[J]. Nucleic Acids Research, 2013, 41(1):677-686.
[9] Wang Y, Wu L, Wang P F, et al. Manipulation of gene expression in zebrafish using caged circular morpholino oligomers[J]. Nucleic Acids Research, 2012, 40(21):11155-11162.
[10] Szymanski W, Beierle J M, Kistemaker H A, et al. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches[J]. Chemical Reviews, 2013, 113(8):6114-6178.
[11] Beharry A A, Woolley G A. Azobenzene photoswitches for biomolecules[J]. Chemical Society Reviews, 2011, 40(8):4422-4437.
[12] Liu Z F, Hashimoto K, Fujishima A. Photoelectrochemical information-storage using an azobenzene derivative[J]. Nature, 1990, 347(6294):658-660.
[13] Kumar G S, Neckers D C. Photochemistry of azobenzene-containing polymers[J]. Chemical Reviews, 1989, 89(8):1915-1925.
[14] Zimmerman G, Chow L Y, Paik U J. The photochemical isomerization of azobenzene[J]. Journal of the American Chemical Society, 1958, 80(14):3528-3531.
[15] Yang Y Y, Endo M, Hidaka K, et al. Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns[J]. Journal of the American Chemical Society, 2012, 134(51):20645-20653.
[16] Yan Y Q, Chen J I, Ginger D S. Photoswitchable oligonucleotide-modified gold nanoparticles:controlling hybridization stringency with photon dose[J]. Nano Letters, 2012, 12(5):2530-2536.
[17] Lohmann F, Ackermann D, Famulok M. Reversible light switch for macrocycle mobility in a DNA rotaxane[J]. Journal of the American Chemical Society, 2012, 134(29):11884-11887.
[18] Tunitskaya V L, Kochetkov S N. Structural-functional analysis of bacteriophage T7 RNA polymerase[J]. Biochemistry-Moscow, 2002, 67(10):1124-1135.
[19] Nakasone Y, Ooi H, Kamiya Y, et al. Dynamics of inter-DNA chain interaction of photoresponsive dNA[J]. Journal of the American Chemical Society, 2016, 138(29):9001-9004.
[20] Kingsland A, Samai S, Yan Y Q, et al. Local density fluctuations predict photoisomerization quantum yield of azobenzene-modified DNA[J]. The Journal of Physical Chemistry Letters, 2016, 7(15):3027-3031.
[21] Yan Y Q, Wang X, Chen J L, et al. Photoisomerization quantum yield of azobenzene-modified DNA depends on local sequence[J]. Journal of the American Chemical Society, 2013, 135(22):8382-8387.
[22] Lubbe A S, Szymanski W, Feringa B L. Recent developments in reversible photoregulation of oligonucleotide structure and function[J]. Chemical Society Reviews, 2017, 46(4):1052-1079.
[23] Chen H R, Zhang, H Y, Pan, J, et al. Dynamic and progressive control of DNA origami conformation by modulating DNA helicity with chemical adducts[J]. ACS Nano, 2017, 10(5):4989-4996.
[24] Liu M Z, Asanuma H, Komiyama M. Azobenzene-tethered T7 promoter for efficient photoregulation of transcription[J]. Journal of the American Chemical Society, 2006, 128(3):1009-1015.
[25] Wang X L, Huang J, Zhou Y Y, et al. Conformational switching of G-quadruplex DNA by photoregulation[J]. Angewandte Chemie-International Edition, 2010, 49(31):5305-5309.
[26] Matsunaga D, Asanuma H, Komiyama M. Photoregulation of RNA digestion by RNase H with azobenzene-tethered DNA[J]. Journal of the American Chemical Society, 2004, 126(37):11452-11453.
[27] Liang X G, Asanuma H, Komiyama M. Photoregulation of DNA triplex formation by azobenzene[J]. Journal of the American Chemical Society, 2002, 124(9):1877-1883.
[28] Chaulk S G, MacMillan A M. Caged RNA:photo-control of a ribozyme reaction[J]. Nucleic Acids Research, 1998, 26(13):3173-3178.
[29] Dong M X, Babalhavaeji A, Samanta S, et al. Red-shifting azobenzene photoswitches for in vivo use[J]. Accounts of Chemical Research, 2015, 48(10):2662-2670.
[30] Nishioka H, Liang X G, Asanuma H. Effect of the ortho modification of azobenzene on the photoregulatory efficiency of DNA hybridization and the thermal stability of its cis form[J]. Chemistry-A European Journal, 2010, 16(7):2054-2062.
[31] Wu L, Wu Y, Jin H W, et al. Photoswitching properties of hairpin ODNs with azobenzene derivatives at the loop position[J]. MedChemCommun, 2015, 6(3):461-468.
[32] Wu L, Koumoto K, Sugimoto N. Reversible stability switching of a hairpin DNA via a photo-responsive linker unit[J]. Chem Commun, 2009, 14(14):1915-1917.
[33] Wu L, He Y J, Tang X J. Photoregulating RNA digestion using azobenzene linked dumbbell antisense oligodeoxynucleotides[J]. Bioconjugate Chemistry, 2015, 26(6):1070-1079.
[34] Young D D, Edwards W F, Lusic H, et al. Light-triggered polymerase chain reaction[J]. Chemical Communications, 2008, (4):462-464.
[35] Wang Q, Yi L, Liu L L, et al. A thermostable azo-linker for reversible photoregulation of DNA replication[J]. Tetrahedron Letters, 2008, 49(34):5087-5089.
[36] Yamazawa A, Liang X G, Asanuma H, et al. Photoregulation of the DNA polymerase reaction by oligonucleotides bearing an azobenzene[J]. Angewandte Chemie-International Edition, 2000, 39(13):2356-2357.
[37] Kamiya Y, Takagi T, Ooi H, et al. Synthetic gene involving azobenzene-tethered T7 promoter for the photocontrol of gene expression by visible light[J]. ACS Synthetic Biology, 2015, 4(4):365-370.
[38] Asanuma H, Tamaru D, Yamazawa A, et al. Photoregulation of the transcription reaction of T7 RNA polymerase by tethering an azobenzene to the promoter[J]. Chembiochem, 2002, 3(8):786-789.
[39] Wang X Y, Liang X G. Azobenzene-modified antisense oligonucleotides for site-specific cleavage of RNA with photocontrollable property[J]. RSC Advances, 2016, 6(96):93398-93402.
[40] Tian T, Song Y Y, Wang J Q, et al. Small-molecule-triggered and light-controlled reversible regulation of enzymatic activity[J]. Journal of the American Chemical Society, 2016, 138(3):955-961. |