[1] Carlson T. An overview of the "triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery[J]. Sensors, 2007, 7:1612-1629.
[2] Kidd C, Levizzani V, Bauer P. A review of satellite meteorology and climatology at the start of the twenty-first century[J]. Progress in Physical Geography, 2009, 33(4):474-489.
[3] 陈斌, 张学霞, 华开. 温度植被干旱指数(TVDI)在草原干旱监测中的应用研究[J]. 干旱区地理, 2013, 36(5):930-937.
[4] 刘焕军, 张柏, 宋开山. 黑土土壤含水量光谱响应特征与模型[J]. 中国科学院研究生院学报, 2008, 25(4):503-509.
[5] 陈书林, 刘元波, 温作民. 卫星遥感反演土壤含水量研究综述[J]. 地球科学进展, 2012, 27(11):1192-1203.
[6] 胡猛, 冯起, 席海洋. 遥感技术监测干旱区土壤含水量研究进展[J]. 土壤通报, 2013, 44(5):1270-1275.
[7] Yuan W, Li Z, Liu N, et al. Passive microwave remote sensing for soil moisture retrieval based on bi-spectrum scattering model[J]. Chinese Journal of Radio Science, 2004, 19(1):1-6.
[8] Wigneron J P, Calvet J C, De Rosnay P, et al. Soil moisture retrievals from biangular L-band passive microwave observations[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4):277-281.
[9] Hasan S, Montzka C, Rüdiger C, et al. Soil moisture retrieval from airborne L-band passive microwave using high resolution multispectral data[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2014, 91(5):59-71.
[10] Ye N, Walker J P, Guerschman J, et al. Standing water effect on soil moisture retrieval from L-band passive microwave observations[J]. Remote Sensing of Environment, 2015, 169:232-242.
[11] Sun L, Sun R, Li X, et al. Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information[J]. Agricultural and Forest Meteorology, 2012, 166:175-187.
[12] Lu L, Luo G P, Wang J Y. Development of an ATI-NDVI method for estimation of soil moisture from MODIS data[J]. International Journal of Remote Sensing, 2014, 35(10):3797-3815.
[13] Stisen S, Sandholt I, Nørgaard A, et al. Combining the triangle method with thermal inertia to estimate regional evapotranspiration:applied to MSG-SEVIRI data in the Senegal River basin[J]. Remote Sensing of Environment, 2008, 112(3):1242-1255.
[14] Gillies R R. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover[J]. Remote Sensing Reviews, 1994, 9(1):161-173.
[15] Carlson T N. Regional-scale estimates of surface moisture availability and thermal inertia using remote thermal measurements[J]. 1986, 1(2):197-247.
[16] Zhang D, Zhou G. Estimation of soil moisture from optical and thermal remote sensing:a review[J]. Sensors, 2016, 16(8):1308-1337.
[17] Li Z L, Tang R L, Wan Z M, et al. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data[J]. Sensors, 2009, 9(5):3801-3853.
[18] Moran M S, Clarke T R, Inoue Y, et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J]. 1994, 49(3):246-263.
[19] Carlson T, Buffum M J. On estimating total daily evapotranspiration from remote surface temperature measurements[J]. Remote Sensing of Environment, 1989, 29(2):197-207.
[20] Price J C. Using spatial context in satellite data to infer regional scale evapotranspiration[J]. IEEE Transactions on Geoscience & Remote Sensing, 1990, 28(5):940-948.
[21] Nemani R, Pierce L, Running S, et al. Developing satellite-derived estimates of surface moisture status[J]. Journal of Applied Meteorology, 1993, 32(3):548-557.
[22] Hansen J, Sato M, Ruedy R. Long-term changes of the diurnal temperature cycle:implications about mechanisms of global climate change[J]. Atmospheric Research, 1995, 37(1):175-209.
[23] Kavin E T, Karl T K. Effects of clouds, soil moisture, precipitation and water vapor on diurnal temperature range[J]. Journal of Climate, 1999, 12(8):2451-2473.
[24] Zhang D J, Tang R L, Zhao W, et al. Surface soil water content estimation from thermal remote sensing based on the temporal variation of land surface temperature[J]. Remote Sensing, 2014, 6(4):3170-3187.
[25] Leng P, Song X N, Duan S B, et al. A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data[J]. International Journal of Applied Earth Observations and Geoinformation, 2016, 52:338-348.
[26] Duan S B, Li Z L, Tang B H, et al. Direct estimation of land-surface diurnal temperature cycle model parameters from MSG-SEVIRI brightness temperatures under clear sky conditions[J]. Remote Sensing of Environment, 2014, 150:34-43.
[27] Braganza K, Karoly D J, Arblaster J M. Diurnal temperature range as an index of global climate change during the twentieth century[J]. Geophysical Research Letters, 2004, 31(13):405-407.
[28] Carlson T N, Gillies R R, Schmugge T J. An interpretation of methodologies for indirect measurement of soil-water content[J]. Agricultural & Forest Meteorology, 1995, 77(3):191-205.
[29] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2):213-224.
[30] Zhang R H, Tian J, Su H B, et al. Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval[J]. Sensors, 2008, 8(10):6165-6187.
[31] Verstraeten W W, Veroustraete F, Sande C J, et al. Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests[J]. Remote Sensing of Environment, 2006, 101(3):299-314.
[32] Saxton K E, Rawls W J. Estimating generalized soil-water characteristics from texture[J].Soil Science Society of America Journal, 1986, 50(4):1031-1036. |