[1] Cortes C, Vapnik V. Support vector networks[J]. Machine Learning, 1995,20(3):273-297.
[2] Yau G X, Zhang C. Multi-category angle-based classifier refit[EB/OL]. (2016-07-19)[2017-08-12]. https://arxiv.org/abs/1607.05709.
[3] Moguerza J M, Muñoz A. Support vector machines with applications[J]. Statistical Science, 2006, 21(3):322-336.
[4] Allwein E L, Schapire R E, Singer Y. Reducing multiclass to binary:a unifying approach for margin classifiers[J]. Proc International Conference on Machine Learning, San Francisco Ca:Morgan Kaufmann, 2000, 1(2):9-16.
[5] Hastie T, Tibshirani R. Classification by pairwise coupling[C]//Conference on Advances in Neural Information Processing Systems. MIT Press, 1998:507-513.
[6] Crammer K, Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines[J]. J Machine Learning Res, 2001, 2(2):265-292.
[7] Lee Y, Lin Y, Wahba G. Multicategory support vector machines:theory and application to the classification of microarray data and satellite radiance data[J]. Journal of the American Statistical Association, 2004,99(465):67-81.
[8] Zhang C, Liu Y, Wu Z. On the effect and remedies of shrinkage on classification probability estimation[J]. American Statistician, 2013,67(3):134-142.
[9] Zhang C, Liu Y. Multicategory angle-based large-margin classification[J]. Biometrika, 2014, 3(3):625-640.
[10] Zhang C, Liu Y, Wang J, et al. Reinforced angle-based multicategory support vector machines[J]. Journal of Computational and Graphical Statistics, 2016,25(3):806-825.
[11] Wei Z, Wang K, Qu H Q, et al. From disease association to risk assessment:an optimistic view from genome-wide association studies on type 1 diabetes[J]. Plos Genetics, 2009, 5(10):e1000678.
[12] Torr P H S. Locally linear support vector machines[C]//International Conference on International Conference on Machine Learning. Omnipress, 2011:985-992.
[13] Chen T, Wang Y, Chen H, et al. Targeted local support vector machine for age-dependent classification[J]. Journal of the American Statistical Association, 2014, 109(507):1174-1187.
[14] Fernandes K, Cardoso J S, Fernandes J. Transfer Learning with Partial Observability Applied to Cervical Cancer Screening[M] Pattern Recognition and Image Analysis. 2017:243-250.
[15] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1):321-357. |