[1] Santini T C, Kerr J L, Warren L A. Microbially-driven strategies for bioremediation of bauxite residue[J]. Journal of Hazardous Materials, 2015, 293:131-157.
[2] Xue S G, Kong X F, Zhu F, et al. Proposal for management and alkalinity transformation of bauxite residue in China[J]. Environmental Science and Pollution Research, 2016, 23(13):12822-12834.
[3] Xue S G, Zhu F, Kong X F, et al. A review of the characterization and revegetation of bauxite residues (red mud)[J]. Environmental Science and Pollution Research, 2016, 23(2):1120-1132.
[4] Liu X M, Zhang N, Sun H H, et al. Structural investigation relating to the cementitious activity of bauxite residue:red mud[J]. Cement and Concrete Research, 2011,41(8):847-853.
[5] Liu Y J, Naidu R. Hidden values in bauxite residue (red mud):recovery of metals[J]. Waste Management, 2014, 34(12):2662-2673.
[6] Liu W C, Chen X Q, Li W X, et al. Environmental assessment, management and utilization of red mud in China[J]. Journal of Cleaner Production, 2014, 84:606-610.
[7] Jones B E H, Haynes R J. Bauxite processing residue:a critical review of its formation, properties, storage, and revegetation[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(3):271-315.
[8] 朱锋,李萌,薛生国,等. 自然风化过程对赤泥团聚体有机碳组分的影响[J]. 生态学报, 2017, 37(4):1174-1183.
[9] Kong X F, Tian T, Xue S G, et al. Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation[J]. Land Degradation & Development, 2018, 29(1):58-67.
[10] 程乙,任昊,刘鹏,等. 不同栽培管理模式对农田土壤团聚体组成及其碳、氮分布的影响[J]. 应用生态学报, 2016,27(11):3521-3528.
[11] 江春玉,刘萍,刘明,等. 不同肥力红壤水稻土根际团聚体组成和碳氮分布动态[J]. 土壤学报, 2017, 54(1):138-149.
[12] 刘恩科,赵秉强,梅旭荣,等. 不同施肥处理对土壤水稳定性团聚体及有机碳分布的影响[J]. 生态学报, 2010, 30(4):1035-1041.
[13] Zhu F, Xue S G, Hartley W, et al. Novel predictors of soil genesis following natural weathering processes of bauxite residues[J]. Environmental Science and Pollution Research, 2016, 23(3):2856-2863.
[14] 朱锋,韩福松,薛生国,等. 氧化铝赤泥堆场团聚体的分形特征[J]. 中国有色金属学报, 2016, 26(6):1316-1323.
[15] Santini T C, Fey M V. Spontaneous vegetation encroachment upon bauxite residue (red mud) as an indicator and facilitator of in situ remediation processes[J]. Environmental Science & Technology, 2013, 47(21):12089-12096.
[16] Zhu F, Liao J X, Xue S G, et al. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography[J]. Science of the Total Environment, 2016, 573:155-163.
[17] Zhu F, Cheng Q Y, Xue S G, et al. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas. Land[J]. Land Degradation & Development, 2018, 29(1):138-149.
[18] Jones B E H, Haynes R J, Phillips I R. Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand[J]. Environmental Science and Pollution Research, 2011, 18(2):199-211.
[19] Courtney R, Kirwan L. Gypsum amendment of alkaline bauxite residue:plant available aluminium and implications for grassland restoration[J]. Ecological Engineering, 2012, 42:279-282.
[20] Courtney R G, Jordan S N, Harrington T. Physico-chemical changes in bauxite residue following application of spent mushroom compost and gypsum[J]. Land Degradation & Development, 2009, 20(5):572-581.
[21] Saha D, Kukal S S. Soil structural stability and water retention characteristics under different land uses of degraded lower himalayas of North-West india[J]. Land Degradation & Development, 2015, 26(3):263-271.
[22] Falsone G, Celi L, Stanchi S, et al. Relative importance of mineralogy and organic matter characteristics on macroaggregate and colloid dynamics in MG-Silicate dominated soils[J]. Land Degradation & Development, 2016, 27(7):1700-1708.
[23] Sinha R K, Agarwal S, Chauhan K, et al. The wonders of earthworms & Its vermicompost in farm production:Charles Darwin's ‘friends of farmers’, with potential to replace destructive chemical fertilizers[J]. Agricultural Sciences, 2010, 1(2):76-94.
[24] Zhu F, Hou J T, Xue S G, et al. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue[J]. Land Degradation & Development, 2017, 28(7):2109-2120.
[25] Wu C, Wang Q L, Xue, S G, et al. Do aeration conditions affect arsenic and phosphate accumulation and phosphate transporter expression in rice (Oryza sativa L.)?[J]. Environmental Science and Pollution Research, 2018, 25(1):43-51.
[26] Jones B E H, Haynes R J, Phillips I R. Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand[J]. Environmental Science and Pollution Research, 2011, 18(2):199-211.
[27] Ma R, Cai C, Li Z, et al. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography[J]. Soil and Tillage Research, 2015, 149:1-11.
[28] 刘雷, 安韶山, 黄华伟. 应用Le Bissonnais法研究黄土丘陵区植被类型对土壤团聚体稳定性的影响[J]. 生态学报, 2013, 33(20):6670-6680.
[29] Courtney R G, Timpson J P. Nutrient status of vegetation grown in alkaline bauxite processing residue amended with gypsum and thermally dried sewage sludge:a two year field study[J]. Plant and Soil, 2004, 266:187-194.
[30] Verdenelli R A, Lamarque A L, Meriles J M. Short-term effects of combined iprodione and vermicompost applications on soil microbial community structure[J]. Science of the Total Environment, 2012, 414:210-219.
[31] Cheng M, Xiang Y, Xue Z, et al. Soil aggregation and intra-aggregate carbon fractions in relation to vegetation succession on the Loess Plateau, China[J]. Catena, 2015, 124:77-84.
[32] 尹建道,张鹏程,张建唐,等. 土壤改良基质对天津滨海盐土的改良效果研究[J]. 土壤通报, 2016, 47(2):419-424.
[33] Levy G J, Stern R, Agassi M, et al. Microaggregate stability of kaolinitic and illitic soils determined by ultrasonic energy[J]. Soil Science Society of America Journal, 1993, 57(3):803-808.
[34] Harris M A, Rengasamy P. Sodium affected subsoils, gypsum, and green-manure:inter-actions and implications for amelioration of toxic red mud wastes[J]. Environmental Geology, 2004, 45(8):1118-1130.
[35] Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33:141-163.
[36] 石宗琳,王加旭,梁化学,等. 渭北不同园龄苹果园土壤团聚体状况及演变趋势研究[J]. 土壤学报, 2017, 54(2):387-399.
[37] Villar M C, Petrikova V, Díaz-Raviña M, et al. Changes in soil microbial biomass and aggregate stability following burning and soil rehabilitation[J]. Geoderma, 2004, 122(1):73-82.
[38] Kong X F, Li M, Xue S G, et al. Acid transformation of bauxite residue:conversion of its alkaline characteristics[J]. Journal of Hazardous Materials, 2017, 324:382-390.
[39] Zhang K. L, Shu A P, Xu X L, et al. Soil erodibility and its estimation for agricultural soils in China[J]. Journal of Arid Environments, 2008, 72(6):1002-1011. |