[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5 696):666-669.
[2] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6 348):56.
[3] Sheng X L, Yan Q B, Ye F, et al. T-carbon:a novel carbon allotrope[J]. Physical Review Letters, 2011, 106(15):155 703.
[4] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9):652.
[5] Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters, 2008, 8(1):323-327.
[6] Du H L, Li X Y. Molecular dynamics simulations for separation of H2/N2 by porous graphene[J]. Journal of Graduate University of Chinese Academy of Sciences, 2012, 29(3):312-315.
[7] Park H, Afzali A, Han S J, et al. High-density integration of carbon nanotubes via chemical self-assembly[J]. Nature Nanotechnology, 2012, 7(12):787.
[8] Baughman R H, Eckhardt H, Kertesz M. Structure-property predictions for new planar forms of carbon:Layered phases containing sp2 and sp atoms[J]. The Journal of Chemical Physics, 1987, 87(11):6 687-6 699.
[9] Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46(19):3 256-3 258.
[10] Gao J, Li J, Chen Y, et al. Architecture and properties of a novel two-dimensional carbon material-graphtetrayne[J]. Nano Energy, 2018, 43:192-199.
[11] Jia Z, Zuo Z, Yi Y, et al. Low temperature, atmospheric pressure for synthesis of a new carbon Ene-yne and application in Li storage[J]. Nano Energy, 2017, 33:343-349.
[12] Narita N, Nagai S, Suzuki S, et al. Optimized geometries and electronic structures of graphyne and its family[J]. Physical Review B, 1998, 58(16):11 009.
[13] Li Y, Xu L, Liu H, et al. Graphdiyne and graphyne:from theoretical predictions to practical construction[J]. Chemical Society Reviews, 2014, 43(8):2 572-2 586.
[14] Luo G, Qian X, Liu H, et al. Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne:theory and experiment[J]. Physical Review B, 2011, 84(7):075 439.
[15] Sun C, Searles D J. Lithium storage on graphdiyne predicted by DFT calculations[J]. The Journal of Physical Chemistry C, 2012, 116(50):26 222-26 226.
[16] Zhang S, Liu H, Huang C, et al. Bulk graphdiyne powder applied for highly efficient lithium storage[J]. Chemical Communications, 2015, 51(10):1 834-1 837.
[17] Li C, Li J, Wu F, et al. High capacity hydrogen storage in Ca decorated graphyne:a first-principles study[J]. The Journal of Physical Chemistry C, 2011, 115(46):23 221-23 225.
[18] Bartolomei M, Carmona-Novillo E, Hernández M I, et al. Graphdiyne pores:"ad hoc" openings for helium separation applications[J]. The Journal of Physical Chemistry C, 2014, 118(51):29 966-29 972.
[19] Bartolomei M, Carmona-Novillo E, Hernández M I, et al. Penetration barrier of water through graphynes' pores:first-principles predictions and force field optimization[J]. The Journal of Physical Chemistry Letters, 2014, 5(4):751-755.
[20] Cui H J, Sheng X L, Yan Q B, et al. Strain-induced Dirac cone-like electronic structures and semiconductor-semimetal transition in graphdiyne[J]. Physical Chemistry Chemical Physics, 2013, 15(21):8 179-8 185.
[21] Koo J, Park M, Hwang S, et al. Widely tunable band gaps of graphdiyne:an ab initio study[J]. Physical Chemistry Chemical Physics, 2014, 16(19):8 935-8 939.
[22] Lv Q, Si W, Yang Z, et al. Nitrogen-doped porous graphdiyne:a highly efficient metal-free electrocatalyst for oxygen reduction reaction[J]. ACS applied materials & interfaces, 2017, 9(35):29 744-29 752.
[23] Zhang S, Cai Y, He H, et al. Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium[J]. Journal of Materials Chemistry A, 2016, 4(13):4 738-4 744.
[24] Zhang S, Du H, He J, et al. Nitrogen-doped graphdiyne applied for lithium-ion storage[J]. ACS Applied Materials & Interfaces, 2016, 8(13):8 467-8 473.
[25] Lu R, Rao D, Meng Z, et al. Boron-substituted graphyne as a versatile material with high storage capacities of Li and H2:a multiscale theoretical study[J]. Physical Chemistry Chemical Physics, 2013, 15(38):16 120-16 126.
[26] Chen C, Li J, Sheng X L. Graphdiyne nanoribbons with open hexagonal rings:existence of topological unprotected edge states[J]. Physics Letters A, 2017, 381(38):3 337-3 341.
[27] Kresse G, Furthmuler J. Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11 169.
[28] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3 865.
[29] Blöchl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24):17 953.
[30] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3):1 758-1 775 |