[1] Holzhey C, Larsen F, Wilczek F. Geometric and renormalized entropy in conformal field theory[J]. Nuclear Physics B, 1994, 424(3):443-467.
[2] Osterloh A, Amico L, Falci G, et al. Scaling of entanglement close to a quantum phase transition[J]. Nature, 2002, 416(6 881):608-610.
[3] Osborne T J, Nielsen M A. Entanglement in a simple quantum phase transition[J]. Physical Review A, 2002, 66(3):032 110.
[4] Vidal G, Latorre J I, Rico E, et al. Entanglement in quantum critical phenomena[J]. Physical Review Letters, 2003, 90(22):227 902.
[5] Calabrese P, Cardy J. Entanglement entropy and quantum field theory[J]. Journal of Statistical Mechanics:Theory and Experiment, 2004, 2004(6):P06 002.
[6] Calabrese P, Cardy J. Entanglement entropy and quantum field theory:a non-technical introduction[J]. International Journal of Quantum Information, 2006, 4(3):429-438.
[7] Tagliacozzo L, Oliveira T, Iblisdir S, et al. Scaling of entanglement support for matrix product states[J]. Physical Review B, 2008, 78(2):024 410.
[8] Andersson M, Boman M, Östlund S. Density-matrix renormalization group for a gapless system of free fermions[J]. Physical Review B, 1999, 59(16):10 493-10 503.
[9] Calabrese P, Lefevre A. Entanglement spectrum in one-dimensional systems[J]. Physical Review A, 2008, 78(3):032 329.
[10] Pollmann F, Mukerjee S, Turner A M, et al. Theory of finite-entanglement scaling at one-dimensional quantum critical points[J]. Physical Review Letters, 2009, 102(25):255 701.
[11] Stojevic V, Haegeman J, McCulloch I P, et al. Conformal data from finite entanglement scaling[J]. Physical Review B, 2015, 91(3):035 120.
[12] Ran S J, Peng C, Li W, et al. Criticality in two-dimensional quantum systems:tensor network approach[J]. Physical Review B, 2017, 95(15):155 114.
[13] Verstraete F, Cirac J I. Continuous matrix product states for quantum fields[J]. Physical Review Letters, 2011, 104(19):190 405.
[14] Trotter H F. On the product of semi-groups of operators[J]. Proceedings of the American Mathematical Society, 1959, 10(4):545-551.
[15] Suzuki M, Inoue M. The ST-transformation approach to analytic solutions of quantum systems. I:General formulations and basic limit theorems[J]. Progress of Theoretical Physics, 1987, 78(4):787-799.
[16] Inoue M, Suzuki M. The ST-transformation approach to analytic solutions of quantum systems. II:Transfer-matrix and Pfaffian methods[J]. Progress of theoretical physics, 1988, 79(3):645-664.
[17] Li W, Gong S S, Zhao Y, et al. Quantum phase transition, O(3) universality class, and phase diagram of the spin-1/2 Heisenberg antiferromagnet on a distorted honeycomb lattice:a tensor renormalization-group study[J]. Physical Review B, 2010, 81(18):184 427.
[18] Imai T, Nytko E A, BartLetters B M, et al. 63Cu,35Cl, and 1H NMR in the S=1/2 kagome lattice ZnCu3(OH)6Cl2[J]. Physical Review Letters, 2008, 100(7):077 203.
[19] Helton J S, Matan K, Shores M, et al. Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2[J]. Physical Review Letters, 2007, 98(10):107 204.
[20] Olariu A, Mendels P, Bert F, et al. 17O NMR study of the intrinsic magnetic susceptibility and spin dynamics of the quantum kagome antiferromagnet ZnCu3(OH)6Cl2[J]. Physical Review Letters, 2008, 100(8):087 202.
[21] Wulferding D, Lemmens P, Scheib P, et al. Interplay of thermal and quantum spin fluctuations in the kagome lattice compound herbertsmithite[J]. Physical Review B, 2010, 82(14):144 412.
[22] Han T H, Helton J S, Chu S Y, et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet[J]. Nature, 2012, 492(7 429):406-410.
[23] Ryu S, Motrunich O I, Alicea J, et al. Algebraic vortex liquid theory of a quantum antiferromagnet on the kagome lattice[J]. Physical Review B, 2007, 75(18):184 406.
[24] Ran Y, Hermele M, Lee P A, et al. Projected-wave-function study of the spin-1/2 Heisenberg model on the kagome lattice[J]. Physical Review Letters, 2007, 98(11):117 205.
[25] Hermele M, Ran Y, Lee P A, et al. Properties of an algebraic spin liquid on the kagome lattice[J]. Physical Review B, 2008, 77(22):224 413.
[26] Sindzingre P, Lhuillier C. Low-energy excitations of the kagome antiferromagnet and the spin-gap issue[J]. EPL (Europhysics Letters), 2009, 88(2):270 09.
[27] Iqbal Y, Becca F, Sorella S, et al. Gapless spin-liquid phase in the kagome spin-1/2 Heisenberg antiferromagnet[J]. Physical Review B, 2013, 87(6):060 405.
[28] Iqbal Y, Poilblanc D, Becca F. Vanishing spin gap in a competing spin-liquid phase in the kagome Heisenberg antiferromagnet[J]. Physical Review B, 2014, 89(2):020 407.
[29] Liao H J, Xie, Z Y, Chen J et al. Gapless spin-liquid ground state in the S=1/2 kagome antiferromagnet[J]. Physical Review Letters, 2017, 118(13):137 202.
[30] He Y C, Zaletel M P, Oshikawa M, et al. Signatures of Dirac cones in a DMRG study of the kagome Heisenberg model[J]. Physical Review X, 2017, 7(3):031 020. |