[1] 陈万青, 郑荣寿, 张思维, 等. 2013年中国恶性肿瘤发病和死亡分[J].中国肿瘤, 2017, 26(1):1-7.
[2] Kirkwood M K. The state of cancer care in America, 2017:a report by the American Society of Clinical Oncology[J]. Journal of Oncology Practice, 2017, 13(4):E353.
[3] Jokerst J V, Thangaraj M, Kempen P J, et al. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods[J]. ACS Nano, 2012, 6(7):5 920-5 930.
[4] Alkilany A M, Thompson L B, Boulos S P, et al. Gold nanorods:their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions[J]. Advanced Drug Delivery Reviews, 2012, 64(2):190-199.
[5] Liu P, Jin H, Gu N, et al. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma[J]. International Journal of Nanomedicine, 2016, 11:5 003-5 013.
[6] Wu H, Lin J, Gu N, et al. Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs[J]. Biomaterials, 2016, 101:1-9.
[7] Tang S T, Shen H W, Hao Y X, et al. A novel cytosensor based on Pt@Ag nanoflowers and AuNPs/Acetylene black for ultrasensitive and highly specific detection of circulating tumor cells[J]. Biosensors & Bioelectronics, 2018, 104:72-78.
[8] Tang S, Huang X, Zheng N. Silica coating improves the efficacy of Pd nanosheets for photothermal therapy of cancer cells using near infrared laser[J]. Chemical communications, 2011, 47(13):3 948-3 950.
[9] El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes[J]. Accounts of Chemical Research, 2001, 34(4):257-264.
[10] Wang Y, Wu Y, Liu Y, et al. BSA-mediated synthesis of bismuth sulfide nanotheranostic agents for tumor multimodal imaging and thermoradiotherapy[J]. Advanced Functional Materials, 2016, 26(29):5 335-5 344.
[11] Ai K L, Liu Y L, Liu J H, et al. Large-scale synthesis of Bi2S3 nanodots as a contrast agent for In vivo X-ray computed tomography imaging[J]. Advanced Materials, 2011, 23(42):4 886-4 891.
[12] Du J F, Gu Z J, Zhao Y L, et al. Poly (vinylpyrollidone) and selenocysteine modified Bi2Se3 nanoparticles enhance radiotherapy effacacy in tumor and promote radioprotection in normal tissues[J]. Advanced Materials, 2017, 29(34):10.
[13] Mao F X, Wen L, Sun C X, et al. Ultrasmall biocompatible Bi2Se3 nanodots for multimodal imaging-guided synergistic radiophotothermal therapy against cancer[J] ACS Nano, 2016, 10(12):11 145-11 155.
[14] Du J F, Zheng X P, Zhao Y L, et al. Design of TPGS-functionalized Cu3BiS3 nanocrystals with strong absorption in the second near-infrared window forradiation therapy enhancement[J]. Nanoscale, 2017, 9(24):8 229-8 239.
[15] Li A, Li X, Yu X J, et al. Synergistic thermoradiotherapy based on PEGylated Cu3BiS3 ternary semiconductor nanorods with strong absorption in the second near-infrared window[J]. Biomaterials, 2017, 112:164-175.
[16] Guin S N, Biswas K. Cation disorder and bond anharmonicity optimize the thermoelectric properties in kinetically stabilized rocksalt AgBiS2 nanocrystals[J]. Chemisty of Materials, 2013, 25(15):3 225-3 231.
[17] Huang P C, Yang W C, Lee M W. AgBiS2 semiconductor-sensitized solar cells[J]. Journal of Physical Chemistry C, 2013, 117(36):18 308-18 314.
[18] Liang N, Chen, W L, Dai F. Homogenously hexagonal prismatic AgBiS2 nanocrystals:controlled synthesis and application in quantum dot-sensitized solar cells[J]. Crystengcomm, 2015, 17(9):1 902-1 905.
[19] Chen C, Qiu X D, Ji S L. The synthesis of monodispersed AgBiS2 quantum dots with a giant dielectric constant[J]. Crystengcomm, 2013, 15(38):7 644-7 648.
[20] Roper D K, Ahn W, Hoepfner M. Microscale heat transfer transduced by surfac plasmon resonant gold nanoparticles[J]. Journal of Physical Chemistry C, 2007, 111(9):3 636-3 641. |