[1] Bi S Z, Zhang R, Ding Z, et al. Wireless communications in the era of big data[J]. IEEE Communications Magazine, 2015, 53(10):190-199.
[2] CISCO, Inc. Cisco visual networking index:global mobile data traffic forecast[R/OL]. (2017-02)[2018-10-20]. https://www.cisco.com/c/en/us/soltions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html.
[3] Maddah M, Niesen U. Fundamental limits of caching[J]. IEEE Transactions on Infromation Theory, 2014, 60(5):2856-2867.
[4] Bastug E, Bennis M, Debbah M. Living on the edge:the role of proactive caching in 5g wireless networks[J]. IEEE Communications Magazine, 2014, 52(8):82-89.
[5] 余江, 邱玲. 密集小站网络下基于协作滤波的缓存内容决策和用户归属[J]. 中国科学院大学学报, 2016, 33(6):802-807.
[6] Mohamed A, Traverso S, Giaccone P et al. Analyzing the performance of lru caches under non-stationary traffic patterns[J]. ArXiv Preprint, 2013, 1301.4909.
[7] Jaleel A, Theobald K, Steely S, et al. High performance cache replacement using re-reference interval prediction (RRIP)[C]//ACM SIGARCH Computer Architecture News. New York:ACM, 2010:60-71.
[8] Müller S, Atan O, Schaar M, et al. Context-aware proactive content caching with service differentiation in wireless networks[J]. IEEE Transactions on Wireless Communications, 2017, 16(2):1024-1036.
[9] Li S H, Xu J, Schaar M, et al. Trend-aware video caching through online learning[J]. IEEE Transactions on Multimedia, 2016, 18(12):2503-2516.
[10] Azimi S, Simeone O, Sengupta A, et al. Online edge caching and wireless delivery in fog-aided networks with dynamic content popularity[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(6):1189-1202.
[11] Somuyiwa S, György A, Gündüz D. A reinforcement-learning approach to proactive caching in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(6):1331-1344.
[12] Szabo G, Huberman B. Predicting the popularity of online content[J]. Communications of the ACM, 2010, 53(8):80-88.
[13] Trzciński T, Rokita P. Predicting popularity of online videos using support vector regression[J]. IEEE Transactions on Multimedia, 2017, 19(11):2561-2570.
[14] Wang X F, Han Y W, Wang C Y, et al. In-Edge AI:intelligentizing mobile edge computing caching and communication by federated learning[J]. ArXiv Preprint, 2018, 1809.07857.
[15] Lei L, You L, Dai G Y, et al. A deep learning approach for optimizing content delivering in cache-enabled HetNet[C]//Wireless Communication Systems (ISWCS), 2017 International Symposium on. Bologna:IEEE, 2017:449-453.
[16] Martello S, Pisinger D, Toth P. New trends in exact algorithms for the 0~1 Knapsack problem[J]. European Journal of Operational Research, 2000, 123(2):325-332.
[17] Ma N, Tian G D, Zhou X. A lip-reading recognition approach based on long short-term memory[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(1):109-117.
[18] Friedman J, Hastie T, Tibshirani R. The elements of statistical learning[M]. New York:Springer Series in Statistics, 2001.
[19] Werbos P.J. Backpropagation through time:what it does and how to do it[J]. IEEE Proceedings, 1990, 78(10):1550-1560.
[20] Sak H, Senior A, Beaufays F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling[C]//Fifteenth annual Conference of the International Speech Communication Association. Singapore:ISCA Archive, 2014:338-342.
[21] Goodfellow I, Bengio Y, Courville A, et al. Deep learning[M]. Cambridge:MIT press, 2016.
[22] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958.
[23] Rossi D, Rossini G. Caching performance of content centric networks under multi-path routing[J]. Relatório técnico, Telecom ParisTech, 2011:1-6.
[24] Amer R, Butt M, Bennis M, et al. Delay analysis for wireless D2D caching with inter-cluster cooperation[C]//2017 IEEE Global Communications Conference (GLOBECOM). Sigapore:IEEE, 2017:1-7. |